版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法
教学目标
【知识与技能】在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.【过程与方法】经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.【情感、态度与价值观】在小组合作交流中,培养协作精神、探究精神,增强学习信心.
教学重难点
【教学重点】同底数幂乘法运算性质的推导和应用.【教学难点】同底数幂的乘法的法则的应用以及逆用.
教学过程
一、情境导入“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.问题:盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?二、合作探究探究点1同底数幂的乘法典例1计算a2·a3的正确结果是()A.a5 B.a6 C.a8 D.a9[解析]a2·a3=a2+3=a5.[答案]A【技巧点拨】本题是同底数幂的乘法运算,直接利用同底数幂的乘法运算法则运算即可,注意底数不变,指数相加.变式训练化简-b·b3·b4的正确结果是()A.-b7 B.b7 C.-b8 D.b8[答案]C探究点2法则的逆用典例2已知3a=1,3b=2,则3a+b的值为()A.1 B.2 C.3 D.27[解析]∵3a×3b=3a+b,∴3a+b=3a×3b=1×2=2.[答案]B三、板书设计同底数幂的乘法同底数幂的乘法同底数幂的乘法法则
教学反思
本节课应注重同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.
14.1.2幂的乘方
教学目标
【知识与技能】1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;2.通过推理得出幂的乘方的运算性质,并且掌握这个性质.【过程与方法】经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力.【情感、态度与价值观】培养学生合作交流意义和探索精神,让学生体会数学的应用价值.
教学重难点
【教学重点】幂的乘方法则.【教学难点】幂的乘方法则的推导过程及灵活应用.
教学过程
一、情境导入木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么太阳和木星的体积是多少?二、合作探究探究点1幂的乘方典例1计算a6(a2)3=.
[解析]根据幂的运算法则即可求出答案.原式=a6·a6=a12.[答案]a12变式训练计算:(-a2)2=.
[答案]a4探究点2幂的乘方逆用典例2若10m=5,10n=3,则102m+3n=.
[解析]102m+3n=102m·103n=(10m)2·(10n)3=52·33=675.[答案]675【技巧点拨】注意幂的乘方公式的逆用,amn=(am)n=(an)m.变式训练若am=6,an=3,则am+2n的值为.
[答案]54三、板书设计幂的乘方幂的乘方幂的乘方法则
教学反思
本节的内容是幂的乘方,教学过程中,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励,而且有启发、问在有疑之处.本课的主要教学任务是“幂的乘方”,即幂的乘方,底数不变,指数相乘.在课堂教学时,通过幂的意义引导学生探索发现得出这一性质.
14.1.3积的乘方
教学目标
【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.
教学重难点
【教学重点】积的乘方的运算.【教学难点】积的乘方的推导过程的理解和灵活运用.
教学过程
一、情境导入我们前面学过同底数幂的运算法则;幂的乘方运算法则的内容,你知道它们的区别和联系吗?请同学们思考怎样计算(2a3)4,每一步的根据是什么?二、合作探究探究点1积的乘方法则典例1计算:(-2xy2)3=.
[解析](-2xy2)3=(-2)3x3(y2)3=-8x3y6.[答案]-8x3y6根据积的乘方的性质把问题转化为几个幂的乘方,然后再进行运算,用准法则是解这类问题的关键.变式训练计算:-13a[答案]-127a6b探究点2公式的逆用典例2阅读下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4,…①归纳得(ab)n=;(abc)n=;
②计算4100×0.25100=;125×35×23③应用上述结论计算:(-0.125)2021×22022×42020.[解析]①(ab)n=anbn,(abc)n=anbncn.②4100×0.25100=(4×0.25)100=1,125×35=12×3×③(-0.125)2021×22022×42020=-0.125×22×(-0.125×2×4)2020=-0.5×(-1)2020=-0.5.探究点3幂的运算综合练习典例3计算:(-2x2)3+x2·x4-(-3x3)2.[解析](-2x2)3+x2·x4-(-3x3)2=-8x6+x6-9x6=-16x6.三、板书设计积的乘方积的乘方积的乘方法则
教学反思
本节主要是积的乘方,学生很容易得出计算公式,关键是利用公式进行运算,通过练习引导学生明确先利用法则把运算转化为几个幂的乘方的积,然后计算,通过小组练习,讨论,纠错得到正确的解法.
14.1.4整式的乘法第1课时单项式与单项式相乘
教学目标
【知识与技能】会进行单项式乘单项式的运算.【过程与方法】经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.【情感、态度与价值观】培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.
教学重难点
【教学重点】单项式乘法运算法则的推导与应用.【教学难点】单项式乘法运算法则的推导与应用.
教学过程
一、情境导入前面我们学习了幂的运算,我们知道整式有两种,分别为单项式与多项式,那么整式的乘法应有几种,哪种最简单?二、合作探究探究点1单项式乘单项式法则典例1计算:4x2y·(-14x)=.
[解析]根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同它的指数不变,作为积的因式,计算即可.4x2y·-14x=-[答案]-x3y变式训练计算(-2x3y2)3·4xy2=.
[答案]-32x10y8探究点2求代数式的值典例2如果xny4与2xym相乘的结果是2x5y7,求mn的值.[解析]由题意可知xny4×2xym=2xn+1·y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12.探究点3法则应用典例3计算(9×105)×(2.5×103)=.(用科学记数法表示)
[解析](9×105)×(2.5×103)=9×2.5×105×103=22.5×108=2.25×109.[答案]2.25×109探究点4幂的运算综合练习典例4计算:(-3x2y2)2·2xy+(xy)3=.
[解析](-3x2y2)2·2xy+(xy)3=9x4y4·2xy+x3y3=18x5y5+x3y3.[答案]18x5y5+x3y3三、板书设计单项式与单项式相乘单项式乘单项式单项式乘单项式法则
教学反思
本节是单项式与单项式的乘法,学生通过面积的计算,或乘方分配律可以得出运算法则;通过学生小组练习、讨论、纠错提高学生的合作能力,以及在运算中提高学生的应用意识,总结出单项式乘单项式的步骤以及易错点,以引起学生的注意.
第2课时单项式与多项式相乘
教学目标
【知识与技能】掌握单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.【过程与方法】经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.【情感、态度与价值观】培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.
教学重难点
【教学重点】单项式与多项式相乘的法则.【教学难点】整式乘法法则的推导与应用.
教学过程
一、情境导入有3家超市以相同价格n(单位:元/台)销售A牌电视机,它们在一年内的销售量(单位:台)分别是x,y,z,请你采用不同的方法计算它们在这一年内销售这种电视机的总收入.小明的答案是n(x+y+z),小芳的答案是nx+ny+nz,各说各有理,你能给他们评判一下吗?二、合作探究探究点1单项式乘多项式典例1计算:(x-3y)(-6x)=.
[解析]根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.[答案]-6x2+18xy变式训练计算:(3x3y2-6x2y)·13xy2[解析]原式=x4y4-2x3y3.探究点2求未知系数的值典例2已知a(x2+x-c)+b(2x2-x-2)=7x2+4x+3,求a,b,c的值.[解析]∵a(x2+x-c)+b(2x2-x-2)=7x2+4x+3,∴(a+2b)x2+(a-b)x-(ac+2b)=7x2+4x+3,∴a解得a=5,b=1,c=-1.求未知系数的值,根据两个多项式相等时,如ax2+bx=cx2+dx,则有a=c,b=d,得到方程组即可求解,关键是整式的乘法.探究点3求代数式的值典例3已知ab2=-2,则-ab(a2b5-ab3+b)=()A.4 B.2 C.0 D.14[解析]-ab(a2b5-ab3+b)=-a3b6+a2b4-ab2=-(ab2)3+(ab2)2-ab2,当ab2=-2时,原式=-(-2)3+(-2)2-(-2)=8+4+2=14.[答案]D【技巧点拨】这类问题先根据单项式的乘法计算得到多项式,然后把多项式用已知式子表示出来,整体代入求值,这种整体思想是我们经常用到的一种方法.三、板书设计单项式与多项式相乘单项式乘多项式单项式乘多项式法则
教学反思
本节的内容是单项式乘多项式,法则的得到比较简单,教学中,应紧扣法则,单项式乘多项式转化为单项式乘单项式的问题计算,同学小组练习讨论理解多项式的每一项,包括它前面的符号.在实施“情境——探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.
第3课时多项式与多项式相乘
教学目标
【知识与技能】理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.【过程与方法】经历探索多项式与多项式相乘的运算法则的推理过程,体会数学的转化思想.【情感、态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.
教学重难点
【教学重点】多项式与多项式的乘法法则的理解及应用.【教学难点】多项式与多项式的乘法法则的应用.
教学过程
一、情境导入试着用不同方式计算下图的面积,探讨你能得到什么结论.二、合作探究探究点1多项式乘多项式典例1计算(2m-3)(m+2).[解析](2m-3)(m+2)=2m×m+2m×2+(-3)×m+(-3)×2=2m2+4m-3m-6=2m2+m-6.整式的乘法就是根据运算法则转化为单项式乘单项式计算,最后把所得结果相加,注意有同类项的要合并同类项,需提醒是的多项式的项包括它前面的符号.注意不要漏项,漏字母,有同类项的合并同类项.探究点2求未知系数的值典例2若(x+m)(x-8)中不含x的一次项,则m的值为()A.8 B.-8 C.0 D.8或-8[解析]∵(x+m)(x-8)=x2-8x+mx-8m=x2+(m-8)x-8m,又结果中不含x的一次项,∴m-8=0,∴m=8.[答案]A变式训练若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6 B.m=1,n=-6C.m=1,n=6 D.m=5,n=-6[答案]B探究点3求代数式的值典例3若代数式(x+1)2+m(x+1)+n可以化简为x2+2x-3,则m+n=.
[解析]∵(x+1)2+m(x+1)+n=x2+2x+1+mx+m+n=x2+(2+m)x+m+n+1,由题意得m解得m=0,n=-4,故m+[答案]-4探究点4积中不含某项典例4(x2-mx+6)(3x-2)的积中不含x的二次项,则m的值是()A.0 B.23 C.-23 [解析](x2-mx+6)(3x-2)=3x3-(2+3m)x2+(2m+18)x-12,∵(x2-mx+6)·(3x-2)的积中不含x的二次项,∴2+3m=0,解得m=-23[答案]C三、板书设计多项式与多项式相乘多项式乘多项式多项式乘多项式法则
教学反思
本节的内容是多项式的乘法,针对本节课学生的易错点,如“漏项”、“忘变号”的情况,在例题后进行强调,并总结规律,让学生以后在练习计算时避免“漏项”“忘变号”的发生.
第4课时同底数幂的除法
教学目标
【知识与技能】1.掌握同底数幂的除法运算性质,并能运用它解决一些实际问题;2.理解零次幂的意义,了解规定a0=1(a≠0)的合理性;【过程与方法】经历同底数幂的除法运算性质的获得过程,掌握同底数幂的除法运算性质,会用同底数幂的除法运算性质进行有关计算,提高学生的运算能力,进一步体会幂的意义,发展推理能力,提高语言表达能力.【情感、态度与价值观】经历探索同底数幂的除法运算性质的过程,体验通过“转化”构建新知识体系,培养学生大胆猜想,善于观察、归纳的数学品质和创新精神.
教学重难点
【教学重点】同底数幂的除法运算.【教学难点】理解零次幂的意义.
教学过程
一、情境导入至此,我们已经学习了整式的加法、减法、乘法运算.在整式运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来讨论整式的除法.二、合作探究探究点1同底数幂的除法典例1计算(-a)10÷(-a)3的结果等于.
[解析](-a)10÷(-a)3=(-a)10-3=(-a)7=-a7.[答案]-a7【技巧点拨】先把底数-a看作一个整体,直接运用同底数幂的除法法则;也可以将底数化为a,再运用同底数幂的除法法则,即(-a)10÷(-a)3=a10÷(-a3)=-a10-3=-a7.变式训练化简:(x+y)5÷(-x-y)2÷(x+y).[解析]原式=(x+y)5÷(x+y)2÷(x+y)=(x+y)5-2-1=(x+y)2.探究点2零次幂典例2计算:(1)20220+(-3)0-4×120[解析]原式=1+1-4×1=-2.三、板书设计同底数幂的除法1.同底数幂的除法法则:底数不变,指数相减.即am÷an=am-n(a≠0).2.零指数幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).
教学反思
本节课的学习对于学生来说,无论在知识上,还是在类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用.数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识.在培养学生合作与交流的同时,充分调动学生的参与意识和学习积极性,使学生体验到平等、自由和民主,同时也受到了激励和鼓舞,从而形成积极的人生态度.
第5课时整式的除法
教学目标
【知识与技能】会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.
教学重难点
【教学重点】整式除法的法则并应用其法则计算.【教学难点】理解整式除法的法则及其原理.
教学过程
一、情境导入一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?二、合作探究探究点1同底数幂的除法典例132x=2,3y=5,则34x-2y=.
[解析]原式=34x32y=(3[答案]4变式训练若5=3x,7=9y,则3x-2y的值为.
[答案]5探究点2单项式除以单项式典例2计算:10ab3÷(-5ab)=.
[解析]根据单项式除法法则,系数和系数,相同的字母分别相除,作为商的一个因式,只在被除式的字母连同它的指数作为商的一个因式,即可求出答案.原式=-105a1-1b3-1=-2b2[答案]-2b2变式训练4x2y3÷-12xy[答案]16y探究点3多项式除以单项式典例3小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x3y-2xy2,商式必须是2xy,则小亮报一个除式是.
[解析](x3y-2xy2)÷2xy=12x2-[答案]12x2-三、板书设计整式的除法整式的除法同底数幂的除法
教学反思
本节的内容是整式的除法,内容较多,分三部分,通过运算要求学生说出式子每一步变形的根据,并要求学生养成检验的好习惯,利用乘除互为逆运算,检验商式的正确性.培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力,慢慢培养学生良好的思维习惯和主动参与学习的习惯.
14.2乘法公式14.2.1平方差公式
教学目标
【知识与技能】会推导平方差公式,并且懂得运用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感、态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.
教学重难点
【教学重点】平方差公式的推导和运用,以及对平方差公式的几何背景的了解.【教学难点】准确把握运用平方差公式的特征,应用平方差公式解题.
教学过程
一、情境导入从前有一个狡猾的地主,他把一块长为x米的正方形土地租给张老汉种植,有一天,他对张老汉说:“我把这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”张老汉一听觉得没有吃亏,就答应了.你能告诉张老汉他吃亏了吗?二、合作探究探究点1平方差公式的特征典例1下列多项式乘法中可以用平方差公式计算的是()A.(-a+b)(a-b) B.(x+2)(2+x)C.x3+yy-x[解析]A项,原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;B项,原式=(x+2)2,故B不能用平方差公式;D项,原式=x2-x+1,故D不能用平方差公式.[答案]C平方差公式的特征:一是左边是两个多项式相乘,这两个多项式中有一项相同,另一项互为相反数;二是右边是相同项与相反项的平方差;三是公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.变式训练计算(2x3-3a)(-2x3-3a)的结果是()A.-4x6-9a2B.-4x6+9a2C.-4x6-12ax3+9a2D.-4x6-12ax3-9a2[答案]B探究点2平方差公式求值整体思想应用典例2如果(a-b-3)(a-b+3)=40,那么a-b的值为()A.49 B.7C.-7 D.7或-7[解析](a-b-3)(a-b+3)=(a-b)2-9=40,即(a-b)2=49,则a-b=7或-7.[答案]D探究点3平方差公式的计算典例3计算:69×71=.
[解析]原式=(70-1)(70+1)=702-1=4900-1=4899.[答案]4899变式训练计算:20212-2020×2022=.
[答案]1探究点4平方差公式的几何意义典例4如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)[解析]第一个图形阴影部分的面积是a2-b2,第二个图形的面积是(a+b)(a-b).则a2-b2=(a+b)(a-b).[答案]D三、板书设计平方差公式平方差公式平方差公式
教学反思
本节的内容是平方差公式,主要观察是否符合公式特点,只有符合公式特点才能用公式直接求解,利用公式计算.在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.
14.2.2完全平方公式第1课时完全平方公式
教学目标
【知识与技能】会推导完全平方公式,并能运用公式进行简单的运算.【过程与方法】经历利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式的过程.【情感、态度与价值观】通过练习培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.
教学重难点
【教学重点】完全平方公式的推导和应用.【教学难点】完全平方公式的应用.
教学过程
一、情境导入现有如图所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.二、合作探究探究点1完全平方公式典例1计算(3a-2b)2的结果为()A.9a2+4b2 B.9a2+6ab+4b2C.9a2-12ab+4b2 D.9a2-4b2[解析]原式=(3a)2-2×3a×2b+(2b)2=9a2-12ab+4b2.[答案]C【技巧点拨】解本题的关键是熟练运用完全平方公式,记忆完全平方公式可用口诀“首平方,尾平方,首位两倍在中间,中间符号随前面”.很多同学遗漏掉中间积的2倍这一项,应引起注意.探究点2简化运算典例2下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=9216[解析]962=(100-4)2=1002-2×100×4+42=9216,A项错误;962=(95+1)(95+1)=952+2×95×1+1=9216,B项错误;962=(90+6)2=902+2×90×6+62=9216,C项错误;962=(100-4)2=1002-2×100×4+42=9216,D项正确.[答案]D应用完全平方公式时,要注意:①公式中的a,b可以是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.探究点3完全平方式典例3若4a2-kab+9b2是完全平方式,则常数k的值为()A.6 B.12 C.±12 D.±6[解析]∵4a2-kab+9b2是完全平方式,∴-kab=±2×2a×3b=±12ab,∴k=±12.[答案]C变式训练已知x2-8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.-16[答案]C探究点4完全平方公式变形应用典例4已知a+b=3,ab=-2,求下列各式的值.(1)a2+b2;(2)a-b.[解析](1)∵a+b=3,ab=-2,∴a2+b2=(a+b)2-2ab=32-2×(-2)=13.(2)∵a+b=3,ab=-2,∴a-b=±(a-b)2=±a探究点5完全平方公式的几何背景典例5如图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为()A.ab B.(a+b)2 C.(a-b)2 D.a2-b2[解析]中间空的部分的面积=大正方形的面积-4个小长方形的面积=(a+b)2-4ab=a2+2ab+b2-4ab=(a-b)2.[答案]C三、板书设计完全平方公式完全平方公式完全平方公式
教学反思
本节的内容是完全平方公式,在教学中,重视公式的几何背景,较直观地让学生理解代数中的某些问题.利用拼图游戏,调动学生的积极性,让学生关注几何与代数之间的内在联系,增强记忆,也可用口诀的形式让学生形象记忆,尤其针对学生易漏掉中间积的2倍这一项做好针对性的练习.
第2课时添括号法则
教学目标
【知识与技能】掌握乘法公式的结构特征及公式的含义,理解添括号法则,会正确地添括号运用这些公式进行计算.【过程与方法】通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感、态度与价值观】培养良好的分析思想和与人合作的习惯,体会数学的重要价值.
教学重难点
【教学重点】正确应用乘法公式(平方差公式、完全平方公式).【教学难点】对乘法公式的结构特征以及内涵的理解.
教学过程
一、情境导入教室里有a名同学,第一次有b名同学被老师喊到办公室去了,第二次有c名同学被老师喊到办公室去了,请你用代数式表示教室里现在有多少名学生?你能用两种形式表示吗?二、合作探究探究点1添括号法则典例1①5x+3x2-4y2=5x-();
②-3p+3q-1=3q-().
[解析]①5x+3x2-4y2=5x-(4y2-3x2).②-3p+3q-1=3q-(3p+1).[答案]4y2-3x2;3p+1添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.注意遇负全变,遇正不变.探究点2添括号后用公式计算典例2计算:(a-2b+1)(a+2b-1).[解析](a-2b+1)(a+2b-1)=[a-(2b-1)][a+(2b-1)]=a2-(2b-1)2=a2-4b2+4b-1.探究点3用完全平方公式计算典例3计算:(a+2ab-1)2.[解析]原式=(a+2ab)2-2(a+2ab)·1+12=a2+4a2b+4a2b2-2a-4ab+1.变式训练(a+2b-c)2.[解析]原式=(a+2b)2+c2-2c(a+2b)=a2+4ab+4b2+c2-2ac-4bc.探究点4代数式求值典例4先化简,再求值:(a+2b)(a-2b)+(a+2b)2+(2ab2-8a2b2)÷2ab,其中a=1,b=2.[解析]原式=a2-4b2+a2+4ab+4b2-4ab+b=2a2+b,∵a=1,b=2,∴原式=2a2+b=4.三、板书设计添括号法则添括号添括号法则
教学反思
本节的内容是添括号法则,添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确,添括号能利用乘法公式简单计算,重在理解遇负全变,遇正不变的口诀.
14.3因式分解14.3.1提公因式法
教学目标
【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.
教学重难点
【教学重点】了解因式分解的意义,掌握用提公因式法把多项式分解因式.【教学难点】整式乘法与因式分解之间的关系.正确地确定多项式的最大公因式.
教学过程
一、情境导入试计算:37×337+63×337.这里用到了什么运算律?二、合作探究探究点1因式分解的意义典例1下列从左边到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.x2+2x+1=x(x+1)+1C.a2b+ab2=ab(a+b)D.(a-b)(n-m)=(b-a)(n-m)[解析](3-x)(3+x)=9-x2,是多项式乘法,故A错误;x2+2x+1=(x+1)2,故B错误;a2b+ab2=ab(a+b),C正确;(a-b)(n-m)≠(b-a)(n-m),不是因式分解,故D错误.[答案]C探究点2公因式的概念典例2多项式15m3n2+5m2n-20m2n3的公因式是()A.5mn B.5m2n2C.5m2n D.5mn2[解析]多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有的相同字母是m,n,字母m的指数最低是2,字母n的指数最低是1,所以它的公因式是5m2n.[答案]C找公因式的三大要点:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.探究点3提公因式法因式分解典例3将3a2m-6amn+3a分解因式,下面是四位同学分解的结果:①3am(a-2n+1);②3a(am+2mn-1);③3a(am-2mn);④3a(am-2mn+1).其中,正确的是()A.① B.② C.③ D.④[解析]提公因式3a后因式分解,即可做出判断.原式=3a(am-2mn+1).[答案]D三、板书设计提公因式法提公因式法因式分解
教学反思
本节的内容是因式分解的概念,以及提公因式,学生刚学要通过练习正确理解因式分解与整式乘法的区别和联系,进一步讨论明确.因式分解不是加、减、乘、除、乘方、开方的运算,而是一种变形的手段,是一种恒等变形,对于公因式的概念以及确定方法从小组探究、讨论找好确定方法,通过练习理解掌握.
14.3.2公式法第1课时运用平方差公式分解因式
教学目标
【知识与技能】灵活运用平方差公式进行因式分解.【过程与方法】经历探索利用平方差公式进行因式分解的过程,感受逆向思维的意义.【情感、态度与价值观】培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
教学重难点
【教学重点】理解平方差公式因式分解,并学会应用.【教学难点】领会因式分解的解题步骤和分解因式的彻底性.
教学过程
一、情境导入计算①252-242;②352-342;③982-972.看谁算的最快最准,把你的方法给大家分享.二、合作探究探究点1平方差公式因式分解典例1下列各式中,能运用平方差公式分解的多项式是()A.x2+y2 B.1-x2C.-x2-y2 D.x2-xy[解析]x2+y2不能运用平方差公式分解,故A错误;1-x2能运用平方差公式分解,故B正确;-x2-y2不能运用平方差公式分解,故C错误;x2-xy不能运用平方差公式分解,故D错误.[答案]B【技巧点拨】平方差公式的特点是能写成□2-△2的形式,□、△可以是单项式也可以是多项式.变式训练因式分解:(a+b)2-4b2=.
[答案](a+3b)(a-b)探究点2先提公因式再用公式典例2把多项式ax2-4ay2分解因式的结果是.
[解析]原式提取公因式,再利用平方差公式分解即可.原式=a(x2-4y2)=a(x+2y)·(x-2y).[答案]a(x+2y)(x-2y)因式分解的步骤是先提公因式法,然后看能否用公式,因式分解要分解到每一部分都不能再分解为止.探究点3熟练运用平方差公式典例3因式分解:4(m+n)2-9(m-n)2.[解析]4(m+n)2-9(m-n)2=[2(m+n)]2-[3(m-n)]2=[2(m+n)+3(m-n)][2(m+n)-3(m-n)]=(2m+2n+3m-3n)(2m+2n-3m+3n)=(5m-n)(5n-m).变式训练因式分解:(p-4)(p+1)+3p.[解析](p-4)(p+1)+3p=p2-3p-4+3p=(p+2)(p-2).三、板书设计运用平方差公式分解因式运用平方差公式分解因式平方差公式因式分解
教学反思
本节内容是用平方差公式因式分解,平方差公式比较简单,但是变化很多,通过练习要养成先提公因式的习惯,结果要注意到是否进行到每一个多项式因式都不能再分解为止.因式分解是一个重要的内容,也是难点,要根据学生的接受能力,注意到计算题在练习方面的巩固及题型的多样化,应指导学生多加练习.
第2课时运用完全平方公式分解因式
教学目标
【知识与技能】能运用完全平方公式进行因式分解.【过程与方法】经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外勤会计顶岗实习报告合集6篇
- 信息通信网络运行管理员试(电力通信网络管理员)高级技师练习试题及答案
- 施工合同范文集锦七篇
- “太阳”说课稿设计
- 2024年标准副食批发购销协议模板版B版
- 老旧厂区改造的背景与意义
- 2024年度女方出轨婚姻终止协议书:财产分割及子女监护权安排2篇
- 2024年版城市轨道交通建设合同范本
- 2024年指标房买卖合同房产评估及过户流程范本3篇
- 2024年某科技公司与某广告公司关于区块链技术广告推广服务的合同
- 2024年中考英语专项复习训练:语法填空20篇【附解析】
- 安全生产方案及保证措施
- 中国华能招聘笔试题库2024
- 七年级上册《朝花夕拾》梳理及真题训练(含答案)
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 中国矿业大学《自然辩证法》2022-2023学年期末试卷
- 江苏省期无锡市天一实验学校2023-2024学年英语七年级第二学期期末达标检测试题含答案
- 西方经济学考试题库(含参考答案)
- 引水式水电站工程施工组织设计
- 医院工作流程图较全
- NB/T 11431-2023土地整治煤矸石回填技术规范
评论
0/150
提交评论