版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
因式分解-专题训练(50道)一.解答题(共50小题)1.(北碚区校级开学)因式分解:(1)8ab+2a;(2)x2y+2xy﹣15y;(3)9(x+2y)2﹣4(x﹣y)2;(4)a2+4ab﹣1+4b2.2.(桂平市期中)将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc3.(高密市期末)把下列各式进行因式分解(1)m(a﹣2)+n(2﹣a)(2)(x+y)2+4(x+y+1)(3)m(m﹣1)+m﹣1(4)x2﹣2xy+y2﹣1.4.(红旗区校级期中)因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.5.(玄武区校级期中)因式分解.(1)﹣25xy2z﹣10y2z2+35y3z.(2)(a﹣b)2﹣6(b﹣a)+9.(3)a4b4﹣81.(4)81x4﹣72x2y2+16y4.6.(江永县校级期中)因式分解.(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2+2(x2+2x)+1(4)x2+2x+1﹣y2(5)x3+3x2﹣4(拆开分解法)7.(澧县期中)把下列多项式因式分解:(1)x3y﹣2x2y+xy;(2)9a2(x﹣y)+4b2(y﹣x).8.(钦州期末)因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)﹣8ax2+16axy﹣8ay2.9.(句容市期末)因式分解:(1)m2(a﹣b)+n2(b﹣a)(2)(a2+4)2﹣16a2.10.(洪雅县期末)利用因式分解的知识计算:(1)35.6×0.25+67.4×0.25﹣23×0.25(2)502﹣492+482﹣472+462﹣452+…+22﹣12.11.(戚墅堰区校级月考)因式分解①(a﹣b)(x﹣y)﹣(b﹣a)(x+y)②4x2﹣4y2.12.(长葛市校级月考)因式分解:(1)3x2﹣12(2)3x(a﹣b)+2y(b﹣a);(3)(1﹣q)3+2(q﹣1)2;(4)(x+y)2+2(x+y)+1.13.(泰山区期中)因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.14.(射洪县校级期中)将下列各式因式分解:(1)x3﹣x(2)﹣3ma2+12ma﹣9m(3)n2(m﹣2)+4(2﹣m)(4)(x﹣3)3﹣2(x﹣3)15.(南开区期中)因式分解:(1)18axy﹣3ax2﹣27ay2(2)(a2+4)2﹣16a2(3)c(a﹣b)﹣2(a﹣b)2c+(a﹣b)3c.16.(商河县校级期中)因式分解(1)4a(x﹣3)+2b(3﹣x)(2)x4﹣18x2+81(3)4b(1﹣b)3+2(b﹣1)2.17.(高密市期末)把下列各式进行因式分解(1)49m2+43mn+(2)a3﹣4a2﹣12a(3)x2(x﹣y)﹣y2(x﹣y)(4)(a+b)2﹣4(a+b﹣1)18.(邵阳县校级期中)因式分解:(1)3a(x+y)﹣2(y+x);(2)16x4﹣81y4.19.(临清市期末)把下列各式进行因式分解:(1)﹣4a3b2+6a2b﹣2ab(2)(x﹣3)3﹣(3﹣x)2(3)(x2+x)2﹣(x+1)2.20.(聊城校级月考)因式分解(1)a2(a﹣b)+b2(b﹣a)(2)4a2b2﹣(a2+b2)2(3)(x+y)2﹣14y(x+y)+49y2.21.(邵阳县期中)因式分解:(1)12x2+2xy2+2y4(2)4b2c2﹣(b2+c2)(3)a(a2﹣1)﹣a2+1(4)(a+1)(a﹣1)﹣8.22.(忻城县期中)把下列各式因式分解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y);(2)(a+b+1)2﹣(a﹣b+1)2.23.(甘肃校级月考)把下列各式因式分解(1)4a2+6ab+2a(2)5a2﹣20b2(3)﹣8ax2+16axy﹣8ay2(4)a4﹣8a2b2+16b4.24.(武平县校级月考)把下列各式因式分解:(1)3x﹣12x3;(2)9m2﹣4n2;(3)a2(x﹣y)+b2(y﹣x);(4)x2﹣4xy+4y2﹣1.25.(白银校级期中)把下列各式因式分解(1)a5﹣a;(2)a(m﹣2)+b(2﹣m);(3)m4﹣2m2n2+n4;(4)9(m+n)2﹣16(m﹣n)2.26.(垦利县校级月考)因式分解:(1)m(a﹣3)+2(3﹣a);(2)2(1﹣x)2+6a(x﹣1)2;(3)(2x+y)2﹣(x+2y)2;(4)(p﹣4)(p+1)+3p(5)4xy2﹣4x2y﹣y3;(6)(m+n)2﹣4m(m+n)+4m2.27.(西山区期中)因式分解(1)2n(m﹣n)+4(n﹣m)(2)3x2+9x+6(3)16(a﹣b)2﹣4(a+b)2(4)(a2﹣4a)2+8(a2﹣4a)+16.28.(港闸区校级期中)因式分解(1)x2﹣9;(2)2a(x﹣y)﹣3b(y﹣x)(3)b3﹣4b2+4b(4)(x+y)2+2(x+y)+1.(5)(m2+n2)2﹣4m2n2(6)a2﹣2ab+b2﹣1.29.(龙口市校级期中)因式分解:(1)﹣4x3+40x2y﹣100xy2(2)(x2+y2﹣z2)2﹣4x2y2.30.(万州区校级月考)因式分解:(1)4ma2﹣8ma+4m(2)a2(x﹣y)+b2(y﹣x).31.(让胡路区校级期中)因式分解:(1)4x3﹣8x2+4x;(2)9(x+y+z)2﹣(x﹣y﹣z)2.32.(泰兴市校级期中)因式分解:(1)(a+b)2+6(a+b)+9;(2)(x﹣y)2﹣9(x+y)2;(3)a2(x﹣y)+b2(y﹣x).33.(东海县校级月考)利用因式分解简便计算:(1)57×99+44×99﹣99;(2)10012×9934.(吴兴区校级期末)利用因式分解计算:(1−135.(祁东县校级期中)因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3)2016336.(简阳市期中)因式分解(1)m2(a﹣b)+n2(b﹣a)(2)(m2+3m)2﹣8(m2+3m)﹣20.37.(东营期中)因式分解:(1)﹣12x2y+x3+36xy2(2)(x2y2+3)(x2y2﹣7)+25(实数范围内).38.(常宁市校级期中)因式分解(1)x4﹣8x2+16(2)a2b﹣2ab+b.39.(无棣县校级月考)因式分解(1)64m4﹣81n4(2)﹣m4+m2n2(3)a2﹣4ab+4b2(4)x2+2x+1+6(x+1)﹣7.40.(武城县校级月考)因式分解:(1)1﹣4m+4m2(2)7x3﹣7x(3)5x2(x﹣y)3+45x4(y﹣x)(4)x(m﹣x)(m﹣y)﹣m(x﹣m)(y﹣m)41.(龙岩校级月考)因式分解(1)3x﹣3x3(2)2a3b﹣12a2b+18ab(3)x2+2x﹣3.42.(晋江市校级期中)因式分解:①m2﹣9m②x(x﹣y)﹣(x﹣y)③3a2﹣6a+3④n2(m﹣2)+4(2﹣m)43.(重庆校级期中)因式分解及简便方法计算:(1)3x3y﹣6x2y2+3xy3(2)3.14×5.52﹣3.14×4.52.44.(晋江市校级期中)因式分解:(1)9a3﹣6a2+3a(2)x3﹣25x(3)3ax2﹣6axy+3ay2(4)a2(x﹣y)﹣4(x﹣y)45.(南江县校级期中)因式分解①4x2y2﹣9②2x3﹣4x2y+2xy2③4a2b2﹣(a2+b2)2④(x﹣y)2+4xy⑤x(m﹣x)(m﹣y)﹣m(x﹣m)(y﹣m)⑥xm+1﹣xm﹣1.46.(丹棱县期中)因式分解:(1)3m(a﹣b)+5n(b﹣a)(2)2am2﹣8a(3)x3z+4x2yz+4xy2z(4)(2x+y)2﹣(x+2y)247.(安庆校级期中)把下列多项式因式分解①ab2﹣2ab+a②x2﹣y2﹣2y﹣148.(东台市校级期中)因式分解(1)4a2﹣16(2)(x﹣2)(x﹣4)+1(3)x4﹣8x2y2+16y449.(平昌县校级期中)把下列各式因式分解:(1)﹣12a2bc2+6ab2c﹣8a2b2(2)8x2﹣3(7x+3)(3)(a2+4b2)2﹣16a2b2(4)x2(m﹣2)+y2(2﹣m)50.(东台市校级期中)因式分解:(1)a2b﹣4ab2+3a2b2(2)(x2+2x)2﹣(2x+4)2(3)(x2y2)2﹣4x2y2(4)(x2﹣2x)2+2(x2﹣2x)+1.
因式分解-专题训练(50道)解析版一.解答题(共50小题)1.(北碚区校级开学)因式分解:(1)8ab+2a;(2)x2y+2xy﹣15y;(3)9(x+2y)2﹣4(x﹣y)2;(4)a2+4ab﹣1+4b2.【分析】(1)运用提公因式法进行因式分解.(2)先提公因式,再运用十字相乘法进行因式分解.(3)逆用平方差公式,再化简(4)先分组,再运用公式法进行因式分解.【解答】解:(1)8ab+2a=2a(4b+1).(2)x2y+2xy﹣15y=y(x2+2x﹣15)=y(x+5)(x﹣3).(3)9(x+2y)2﹣4(x﹣y)2=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(3x+6y+2x﹣2y)(3x+6y﹣2x+2y)=(5x+4y)(x+8y).(4)a2+4ab﹣1+4b2.=(a2+4ab+4b2)﹣1=(a+2b)2﹣1=(a+2b+1)(a+2b﹣1).2.(桂平市期中)将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc【分析】(1)提取公因式4x即可得;(2)先提取公因式3x2,再利用公式法分解可得;(3)利用分组分解法,将a2﹣ab、ac﹣bc分别作为一组提取公因式后,再分解可得.【解答】解:(1)原式=4x(2x﹣y);(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2;(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).3.(高密市期末)把下列各式进行因式分解(1)m(a﹣2)+n(2﹣a)(2)(x+y)2+4(x+y+1)(3)m(m﹣1)+m﹣1(4)x2﹣2xy+y2﹣1.【分析】(1)提取公因式a﹣2即可得;(2)将原式变形为(x+y)2+4(x+y)+4,利用完全平方公式分解可得;(3)提取公因式m﹣1可得;(4)先利用完全平方公式变形为(x﹣y)2﹣1,再利用平方差公式分解可得.【解答】解:(1)原式=m(a﹣2)﹣n(a﹣2)=(a﹣2)(m﹣n);(2)原式=(x+y)2+4(x+y)+4=(x+y+2)2;(3)原式=(m﹣1)(m+1);(4)原式=(x﹣y)2﹣1=(x﹣y+1)(x﹣y﹣1).4.(红旗区校级期中)因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.【分析】(1)提公因式后利用完全平方公式分解即可;(2)提公因式法分解因式即可;【解答】解:(1)3ma2+18mab+27mb2=3m(a2+6ab+9b2)=3m(a+3b)2;(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2=7a(2x﹣3y)2(3ab﹣2)5.(玄武区校级期中)因式分解.(1)﹣25xy2z﹣10y2z2+35y3z.(2)(a﹣b)2﹣6(b﹣a)+9.(3)a4b4﹣81.(4)81x4﹣72x2y2+16y4.【分析】(1)根据提公因式﹣5yz因式分解即可求解;(2)根据完全平方公式因式分解即可求解;(3)两次根据平方差公式因式分解即可求解;(4)根据完全平方公式和平方差公式因式分解即可求解.【解答】解:(1)﹣25xy2z﹣10y2z2+35y3z=﹣5y2z(5x+2z﹣7y).(2)(a﹣b)2﹣6(b﹣a)+9=(a﹣b+3)2.(3)a4b4﹣81.=(a2b2﹣9)(a2b2+9)=(ab+3)(ab﹣3)(a2b2+9).(4)81x4﹣72x2y2+16y4=(9x2﹣4y2)2=(3x+2y)2(3x﹣2y)2.6.(江永县校级期中)因式分解.(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2+2(x2+2x)+1(4)x2+2x+1﹣y2(5)x3+3x2﹣4(拆开分解法)【分析】(1)提取公因式﹣4x分解因式即可;(2)提取公因式a(x﹣2a)2分解因式即可;(3)根据完全平方公式分解因式即可;(4)根据完全平方公式和平方差公式分解因式即可;(5)拆分为x3+2x2+x2﹣4,再根据提取公因式法和十字相乘法分解因式即可.【解答】解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a(x﹣2a)2(a+2x﹣4a)=a(x﹣2a)2(2x﹣3a);(3)(x2+2x)2+2(x2+2x)+1=(x2+2x+1)2=(x+1)4;(4)x2+2x+1﹣y2=(x+1)2﹣y2=(x+1+y)(x+1﹣y);(5)x3+3x2﹣4=x3+2x2+x2﹣4=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)2(x﹣1).7.(澧县期中)把下列多项式因式分解:(1)x3y﹣2x2y+xy;(2)9a2(x﹣y)+4b2(y﹣x).【分析】(1)原式提取公因式即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=xy(x2﹣2x+1)=xy(x﹣1)2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(3a+2b)(3a﹣2b).8.(钦州期末)因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)﹣8ax2+16axy﹣8ay2.【分析】(1)利用提公因式法即可分解;(2)首先提公因式,然后利用公式法即可分解.【解答】解:(1)原式=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)原式=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.9.(句容市期末)因式分解:(1)m2(a﹣b)+n2(b﹣a)(2)(a2+4)2﹣16a2.【分析】(1)首先提公因式a﹣b,再利用平方差进行分解即可;(2)首先利用平方差进行分解,再利用完全平方公式进行分解即可.【解答】解:(1)原式=m2(a﹣b)﹣n2(a﹣b)=(a﹣b)(m2﹣n2)=(a﹣b)(m+n)(m﹣n);(2)原式=(a2+4﹣4a)(a2+4+4a)=(a﹣2)2(a+2)2.10.(洪雅县期末)利用因式分解的知识计算:(1)35.6×0.25+67.4×0.25﹣23×0.25(2)502﹣492+482﹣472+462﹣452+…+22﹣12.【分析】(1)根据乘法分配律计算即可求解;(2)两个一组利用平方差公式计算,再根据等差数列求和公式计算即可求解.【解答】解:(1)35.6×0.25+67.4×0.25﹣23×0.25=(35.6+67.4﹣23)×0.25=80×0.25=20;(2)502﹣492+482﹣472+462﹣452+…+22﹣12=(502﹣492)+(482﹣472)+(462﹣452)+…+(22﹣12)=(50+49)×(50﹣49)+(48+47)×(48﹣47)+(46+45)×(46﹣45)+…+(2+1)×(2﹣1)=99×1+95×1+91×1+…+3×1=99+95+91+…+3=(99+3)×25÷2=102×25÷2=1275.11.(戚墅堰区校级月考)因式分解①(a﹣b)(x﹣y)﹣(b﹣a)(x+y)②4x2﹣4y2.【分析】①根据提公因式法,可得答案;②根据提公因式法,平方差公式,可得答案.【解答】解:①原式=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b);②原式=4(x2﹣y2)=4(x+y)(x﹣y).12.(长葛市校级月考)因式分解:(1)3x2﹣12(2)3x(a﹣b)+2y(b﹣a);(3)(1﹣q)3+2(q﹣1)2;(4)(x+y)2+2(x+y)+1.【分析】(1)直接提取公因式3,进而利用平方差公式分解因式即可;(2)直接提取公因式(a﹣b),进而分解因式即可;(3)直接提取公因式(1﹣q)2,进而分解因式即可;(4)直接利用完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣12=3(x2﹣4)=3(x+2)(x﹣2);(2)3x(a﹣b)+2y(b﹣a)=(a﹣b)(3x﹣2y);(3)(1﹣q)3+2(q﹣1)2=(1﹣q)3+2(1﹣q)2=(1﹣q)2(1﹣q+2);(4)(x+y)2+2(x+y)+1=(x+y+1)2.13.(泰山区期中)因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式变形后,利用平方差公式分解即可.【解答】解:(1)原式=4m(a﹣b)+6n(a﹣b)=2(a﹣b)(2m+3n);(2)原式=[4(m﹣n)+3(m+n)][4(m﹣n)﹣3(m+n)]=(7m﹣n)(m﹣7n).14.(射洪县校级期中)将下列各式因式分解:(1)x3﹣x(2)﹣3ma2+12ma﹣9m(3)n2(m﹣2)+4(2﹣m)(4)(x﹣3)3﹣2(x﹣3)【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式提取﹣3m,再利用十字相乘法分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式提取公因式即可得到结果.【解答】解:(1)原式=x(x+1)(x﹣1);(2)原式=﹣3m(a﹣1)(a﹣3);(3)原式=(m﹣2)(n+2)(n﹣2);(4)原式=(x﹣3)[(x﹣3)2﹣2]=(x﹣3)(x2﹣6x+7).15.(南开区期中)因式分解:(1)18axy﹣3ax2﹣27ay2(2)(a2+4)2﹣16a2(3)c(a﹣b)﹣2(a﹣b)2c+(a﹣b)3c.【分析】(1)首先提取公因式﹣3a,进而利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(3)首先提取公因式c(a﹣b),进而利用平方差公式分解因式得出答案.【解答】解:(1)18axy﹣3ax2﹣27ay2=﹣3a(﹣6xy+x2+9y2)=﹣3a(x﹣3y)2;(2)(a2+4)2﹣16a2=(a2+4+4a)(a2+4﹣4a)=(a﹣2)2(a+2)2;(3)c(a﹣b)﹣2(a﹣b)2c+(a﹣b)3c=c(a﹣b)[1﹣2(a﹣b)+(a﹣b)2]=c(a﹣b)(a﹣b﹣1)2.16.(商河县校级期中)因式分解(1)4a(x﹣3)+2b(3﹣x)(2)x4﹣18x2+81(3)4b(1﹣b)3+2(b﹣1)2.【分析】(1)提取公因式2(x﹣3)即可求解;(2)先根据完全平方公式计算,再根据平方差公式计算.(3)提取公因式2(1﹣b)2即可求解.【解答】解:(1)4a(x﹣3)+2b(3﹣x)=2(x﹣3)(2a﹣b);(2)x4﹣18x2+81=(x2﹣9)2=(x+3)2(x﹣3)2;(3)4b(1﹣b)3+2(b﹣1)2=2(1﹣b)2(2b﹣2b2+1).17.(高密市期末)把下列各式进行因式分解(1)49m2+43mn+(2)a3﹣4a2﹣12a(3)x2(x﹣y)﹣y2(x﹣y)(4)(a+b)2﹣4(a+b﹣1)【分析】(1)利用完全平方公式分解因式即可;(2)先提取公因式a,再对余下的多项式利用十字相乘法继续分解因式;(3)先提取公因式(x﹣y),再对余下的多项式利用平方差公式继续分解因式;(3)将(a+b)看作一个整体,并整理,然后利用完全平方公式继续分解因式.【解答】解:(1)49m2+43mn+n2=(23m+(2)a3﹣4a2﹣12a,=a(a2﹣4a﹣12),=a(a+2)(a﹣6);(3)x2(x﹣y)﹣y2(x﹣y),=(x﹣y)(x2﹣y2),=(x﹣y)(x+y)(x﹣y),=(x﹣y)2(x+y);(4)(a+b)2﹣4(a+b﹣1),=(a+b)2﹣4(a+b)+4,=(a+b﹣2)2.18.(邵阳县校级期中)因式分解:(1)3a(x+y)﹣2(y+x);(2)16x4﹣81y4.【分析】(1)提取公因式(x+y)即可;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式即可.【解答】(1)3a(x+y)﹣2(y+x)=(x+y)(3a﹣2);(2)16x4﹣81y4,=(4x2+9y2)(4x2﹣9y2),=(4x2+9y2)(2x+3y)(2x﹣3y).19.(临清市期末)把下列各式进行因式分解:(1)﹣4a3b2+6a2b﹣2ab(2)(x﹣3)3﹣(3﹣x)2(3)(x2+x)2﹣(x+1)2.【分析】(1)直接提取公因式﹣2ab,进而分解因式即可;(2)首先提取公因式(x﹣3)2,进而分解因式;(3)首先利用平方差公式分解因式,进而利用完全平方公式以及平方差公式分解因式.【解答】解:(1)﹣4a3b2+6a2b﹣2ab=﹣2ab(2a2b﹣3a+1);(2)(x﹣3)3﹣(3﹣x)2=(x﹣3)2(x﹣3﹣1)=(x﹣3)2(x﹣4);(3)(x2+x)2﹣(x+1)2.=(x2+x+x+1)(x2+x﹣x﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).20.(聊城校级月考)因式分解(1)a2(a﹣b)+b2(b﹣a)(2)4a2b2﹣(a2+b2)2(3)(x+y)2﹣14y(x+y)+49y2.【分析】(1)先用提取公因式法分解因式,再运用平方差公式分解因式即可;(2)先用平方差公式分解因式,再运用完全平方公式分解因式即可;(3)运用完全平方公式分解因式即可.【解答】解:(1)a2(a﹣b)+b2(b﹣a)=a2(a﹣b)﹣b2(a﹣b)=(a﹣b)(a2﹣b2)=(a﹣b)2(a+b);(2)4a2b2﹣(a2+b2)2=(2ab+a2+b2)(2ab﹣a2﹣b2)=﹣(a+b)2(a﹣b)2;(3)(x+y)2﹣14y(x+y)+49y2=(x+y﹣7y)2=(x﹣6y)2.21.(邵阳县期中)因式分解:(1)12x2+2xy2+2y4(2)4b2c2﹣(b2+c2)(3)a(a2﹣1)﹣a2+1(4)(a+1)(a﹣1)﹣8.【分析】(1)首先提取公因式12(2)首先利用平方差公式进行分解因式,再利用完全平方公式进行二次分解即可;(3)首先把后两项看成整体,然后再提公因式a2﹣1,最后再次利用平方差进行分解;(4)首先利用平方差公式进行计算,然后再利用平方差公式进行分解.【解答】解:(1)原式=12(x2+4xy2+4y4)=12(x+2y(2)原式=(2bc+b2+c2)(2bc﹣b2﹣c2)=﹣(2bc+b2+c2)(b2+c2﹣2cb)=﹣(b+c)2(b﹣c)2;(3)原式=a(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a﹣1)=(a+1)(a﹣1)2;(4)原式=a2﹣1﹣8=a2﹣9=(a﹣3)(a+3).22.(忻城县期中)把下列各式因式分解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y);(2)(a+b+1)2﹣(a﹣b+1)2.【分析】(1)首先提取公因式(x﹣y),进而利用完全平方公式分解因式得出答案;(2)首先利用平方差公式分解因式,进而化简得出答案.【解答】解:(1)x2(x﹣y)+2xy(y﹣x)+y2(x﹣y)=(x﹣y)(x2﹣2xy+y2)=(x﹣y)(x﹣y)2=(x﹣y)3;(2)(a+b+1)2﹣(a﹣b+1)2=(a+b+1﹣a+b﹣1)(a+b+1+a﹣b+1)=2b(2a+2)=4b(a+1).23.(甘肃校级月考)把下列各式因式分解(1)4a2+6ab+2a(2)5a2﹣20b2(3)﹣8ax2+16axy﹣8ay2(4)a4﹣8a2b2+16b4.【分析】(1)直接提取公因式2a,进而分解因式即可;(2)直接提取公因式5,进而利用平方差公式分解因式即可;(3)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可;(4)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4a2+6ab+2a=2a(2a+3b+1);(2)5a2﹣20b2=5(a2﹣4b2)=5(a+2b)(a﹣2b);(3)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+4y2)=﹣8a(x﹣2y)2;(4)a4﹣8a2b2+16b4=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.24.(武平县校级月考)把下列各式因式分解:(1)3x﹣12x3;(2)9m2﹣4n2;(3)a2(x﹣y)+b2(y﹣x);(4)x2﹣4xy+4y2﹣1.【分析】(1)首先提取公因式3x,进而利用平方差公式分解因式即可;(2)直接利用平方差公式分解因式进而得出答案;(3)首先提取公因式(x﹣y),进而利用平方差公式分解因式即可;(4)将前3项分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1﹣2x)(1+2x);(2)9m2﹣4n2=(3m+2n)(3m﹣2n);(3)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a+b)(a﹣b);(4)x2﹣4xy+4y2﹣1=(x﹣y)2﹣1=(x﹣y+1)(x﹣y﹣1).25.(白银校级期中)把下列各式因式分解(1)a5﹣a;(2)a(m﹣2)+b(2﹣m);(3)m4﹣2m2n2+n4;(4)9(m+n)2﹣16(m﹣n)2.【分析】(1)原式提取a,再利用平方差公式分解即可;(2)方程变形后,提取公因式即可得到结果;(3)方程利用完全平方公式及平方差公式分解即可;(4)方程利用平方差公式分解即可得到结果.【解答】解:(1)原式=a(a4﹣1)=a(a2+1)(a2﹣1)=a(a2+1)(a+1)(a﹣1);(2)原式=a(m﹣2)﹣b(m﹣2)=(m﹣2)(a﹣b);(3)原式=(m2﹣n2)2=(m+n)2(m﹣n)2;(4)原式=[3(m+n)﹣4(m﹣n)][3(m+n)+4(m﹣n)]=(﹣m+7n)(7m﹣n).26.(垦利县校级月考)因式分解:(1)m(a﹣3)+2(3﹣a);(2)2(1﹣x)2+6a(x﹣1)2;(3)(2x+y)2﹣(x+2y)2;(4)(p﹣4)(p+1)+3p(5)4xy2﹣4x2y﹣y3;(6)(m+n)2﹣4m(m+n)+4m2.【分析】(1)利用提公因式法,进行因式分解;(2)利用提公因式法,进行因式分解;(3)利用平方差公式,进行因式分解;(4)利用平方差公式,进行因式分解;(5)利用提公因式法和完全平方公式,进行因式分解;(6)利用完全平方公式,进行因式分解.【解答】解:(1)m(a﹣3)+2(3﹣a)=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2)(2)2(1﹣x)2+6a(x﹣1)2=2(x﹣1)2+6a(x﹣1)2=2(x﹣1)2(1+3a)(3))(2x+y)2﹣(x+2y)2=[(2x+y)+(x+2y)][(2x+y)﹣(x+2y)]=[3x+3y)][x﹣y)]=3(x+y)(x﹣y)(4)(p﹣4)(p+1)+3p=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p+2).(5)4xy2﹣4x2y﹣y3;=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2(6)(m+n)2﹣4m(m+n)+4m2.=(m+n)2﹣2•(m+n)•2m+(2m)2=[(m+n)﹣2m]2.=(n﹣m)227.(西山区期中)因式分解(1)2n(m﹣n)+4(n﹣m)(2)3x2+9x+6(3)16(a﹣b)2﹣4(a+b)2(4)(a2﹣4a)2+8(a2﹣4a)+16.【分析】(1)直接提取公因式2(m﹣n),进而得出答案;(2)首先提取公因式3,进而利用十字相乘法分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式得出即可.【解答】解:(1)2n(m﹣n)+4(n﹣m)=2(m﹣n)(n﹣2);(2)3x2+9x+6=3(x2+3x+2)=3(x+1)(x+2);(3)16(a﹣b)2﹣4(a+b)2=[4(a﹣b)+2(a+b)][4(a﹣b)﹣2(a+b)]=4(3a﹣b)(a﹣3b);(4)(a2﹣4a)2+8(a2﹣4a)+16=(a2﹣4a+4)2=(a﹣2)4.28.(港闸区校级期中)因式分解(1)x2﹣9;(2)2a(x﹣y)﹣3b(y﹣x)(3)b3﹣4b2+4b(4)(x+y)2+2(x+y)+1.(5)(m2+n2)2﹣4m2n2(6)a2﹣2ab+b2﹣1.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式法,可得答案;(3)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(4)根据完全平方公式,可得答案;(5)根据平方差公式,可得完全平方公式,根据完全平方公式,可得答案;(6)根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:(1)原式=(x+3)(x﹣3);(2)原式=2a(x﹣y)+3b(x﹣y)=(x﹣y)(2a+3b);(3)原式=b(b2﹣4b+4)=b(b﹣2)2;(4)原式=[(x+y)+1]2=(x+y+1)2;(5)原式=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2;(6)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1).29.(龙口市校级期中)因式分解:(1)﹣4x3+40x2y﹣100xy2(2)(x2+y2﹣z2)2﹣4x2y2.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【解答】解:(1)﹣4x3+40x2y﹣100xy2=﹣4x(x2﹣10xy+25y2)=﹣4x(x﹣5y)2;(2)(x2+y2﹣z2)2﹣4x2y2=(x2+y2﹣z2+2xy)(x2+y2﹣z2﹣2xy)=[(x+y)2﹣z2][(x﹣y)2﹣z2]=(x+y+z)(x+y﹣z)(x﹣y+z)(x﹣y﹣z).30.(万州区校级月考)因式分解:(1)4ma2﹣8ma+4m(2)a2(x﹣y)+b2(y﹣x).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=4m(a2﹣2a+1)=4m(a﹣1)2;(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a+b)(a﹣b).31.(让胡路区校级期中)因式分解:(1)4x3﹣8x2+4x;(2)9(x+y+z)2﹣(x﹣y﹣z)2.【分析】(1)首先提取公因式4x,进而利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x3﹣8x2+4x=4x(x2﹣2x+1)=4x(x﹣1)2;(2)9(x+y+z)2﹣(x﹣y﹣z)2=[3(x+y+z)﹣(x﹣y﹣z)][3(x+y+z)+(x﹣y﹣z)]=(2x+4y+4z)(4x+2y+2z)=4(x+2y+2z)(2x+y+z).32.(泰兴市校级期中)因式分解:(1)(a+b)2+6(a+b)+9;(2)(x﹣y)2﹣9(x+y)2;(3)a2(x﹣y)+b2(y﹣x).【分析】(1)利用完全平方公式分解因式即可,要把a+b看成一个整体;(2)先利用平方差公式分解因式,再提公因式即可,分解因式要彻底;(3)先进行变形,再提公因式,最后利用平方差公式分解即可.【解答】解:(1)(a+b)2+6(a+b)+9=(a+b+3)2;(2)(x﹣y)2﹣9(x+y)2=(x﹣y)2﹣[3(x+y)]2=(x﹣y+3x+3y)(x﹣y﹣3x﹣3y)=﹣4(2x+y)(x+2y);(3)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2).=(x﹣y)(a+b)(a﹣b).33.(东海县校级月考)利用因式分解简便计算:(1)57×99+44×99﹣99;(2)10012×99【分析】(1)利用提取公因式法简算即可;(2)利用平方差公式计算.【解答】解:(1)原式=(57+44﹣1)×99=100×99=9900;(2)原式=(100+12)(100=1002−=10000−=99993434.(吴兴区校级期末)利用因式分解计算:(1−1【分析】将原式中的每一个因式利用平方差公式因式分解后转化为分数的乘法,从而得到结果.【解答】解:原式=(1−12)(1+12)(1−13)(1+13)(1−14)(1=1=1=1135.(祁东县校级期中)因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3)20163【分析】(1)先提公因式,然后利用平方差公式分解因式;(2)利用提公因式分解因式;(3)把分子分母利用因式分解变形,然后约分即可.【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式==2015×201=2015(201=201536.(简阳市期中)因式分解(1)m2(a﹣b)+n2(b﹣a)(2)(m2+3m)2﹣8(m2+3m)﹣20.【分析】(1)先提公因式(a﹣b),然后利用平方差公式计算;(2)把原式看作m2+3m的二次三项式,然后利用十字相乘法进行因式分解.【解答】解:(1)原式=m2(a﹣b)﹣n2(a﹣b)=(a﹣b)(m2﹣n2)=(a﹣b)(m+n)(m﹣n);(2)原式=(m2+3m﹣10)(m2+3m+2)=(m+5)(m﹣2)(m+1)(m+2).37.(东营期中)因式分解:(1)﹣12x2y+x3+36xy2(2)(x2y2+3)(x2y2﹣7)+25(实数范围内).【分析】(1)首先提取公因式﹣x,再利用完全平方进行二次分解即可.(2)将x2y2看作一个整体,然后进行因式分解.【解答】解:原式=x(﹣12xy+x2+36y2)=x(x﹣6y)2;(2)(x2y2+3)(x2y2﹣7)+25=(x2y2)2﹣4x2y2+4=(x2y2﹣2)2=(xy+2)2(xy−2)38.(常宁市校级期中)因式分解(1)x4﹣8x2+16(2)a2b﹣2ab+b.【分析】(1)根据完全平方公式,可得答案;(2)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:(1)原式=(x2﹣4)2=(x﹣2)2(x+2)2.(2)原式=b(a2﹣2a+1)=b(a﹣1)2.39.(无棣县校级月考)因式分解(1)64m4﹣81n4(2)﹣m4+m2n2(3)a2﹣4ab+4b2(4)x2+2x+1+6(x+1)﹣7.【分析】(1)二次利用平方差公式分解因式;(2)先提取公因式m2,再利用平方差公式分解因式;(3)根据完全平方公式分解因式;(4)先根据完全平方公式变形得到(x+1)2+6(x+1)﹣7,再根据十字相乘法分解因式.【解答】解:(1)64m4﹣81n4=(8m2+9n2)(8m2﹣9n2)=(8m2+9n2)(22m+3n)(22m﹣3n);(2)﹣m4+m2n2=m2(n2﹣m2)=m2(n+m)(n﹣m);(3)a2﹣4ab+4b2=(a﹣2b)2;(4)x2+2x+1+6(x+1)﹣7=(x+1)2+6(x+1)﹣7=(x+1﹣1)(x+1+7)=x(x+8).40.(武城县校级月考)因式分解:(1)1﹣4m+4m2(2)7x3﹣7x(3)5x2(x﹣y)3+45x4(y﹣x)(4)x(m﹣x)(m﹣y)﹣m(x﹣m)(y﹣m)【分析】(1)根据完全平方公式,可得答案;(2)根据提公因式,可得平方差公式,根据平方差公式,可得答案;(3)根据提公因式,可得平方差公式,根据平方差公式,可得答案;(4)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:(1)原式=(1﹣2m)2;(2)原式=7x(x2﹣1)=7x(x+1)(x﹣1);(3)原式=5x2(x﹣y)[(x﹣y)2﹣9x2]=5x2(x﹣y)(4x﹣y)(﹣2x﹣y)=﹣5x2(x﹣y)(4x﹣y)(2x+y);(4)原式=x(x﹣m)(y﹣m)﹣m(x﹣m)(y﹣m)=(x﹣m)(y﹣m)(x﹣m)=(x﹣m)2(y﹣m).41.(龙岩校级月考)因式分解(1)3x﹣3x3(2)2a3b﹣12a2b+18ab(3)x2+2x﹣3.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解即可.【解答】解:(1)原式=3x(1﹣x2)=3x(1+x)(1﹣x);(2)原式=2ab(a2﹣6a+9)=2ab(a﹣3)2;(3)原式=(x﹣1)(x+3).42.(晋江市校级期中)因式分解:①m2﹣9m②x(x﹣y)﹣(x﹣y)③3a2﹣6a+3④n2(m﹣2)+4(2﹣m)【分析】①原式提取公因式即可得到结果;②原式提取公因式即可得到结果;③原式提取3,再利用完全平方公式分解即可;④原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:①m2﹣9m=m(m﹣9);②x(x﹣y)﹣(x﹣y)=(x﹣y)(x﹣1);③3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2;④n2(m﹣2)+4(2﹣m)=n2(m﹣2)﹣4(m﹣2)=(m﹣2)(n2﹣4)=(m﹣2)(n+2)(n﹣2).43.(重庆校级期中)因式分解及简便方法计算:(1)3x3y﹣6x2y2+3xy3(2)3.14×5.52﹣3.14×4.52.【分析】(1)首先提取公因式3xy,再利用平方差进行二次分解即可;(2)首先提取公因式3.14,进而利用平方差公式分解因式得出即可.【解答】解:(1)原式=3xy(x2﹣2xy+y2)=3xy(x﹣y)2;(2)原式=3.14(5.52﹣4.52),=3.14×(5.5+4.5)(5.5﹣4.5),=31.4.44.(晋江市校级期中)因式分解:(1)9a3﹣6a2+3a(2)x3﹣25x(3)3ax2﹣6axy+3ay2(4)a2(x﹣y)﹣4(x﹣y)【分析】(1)直接提取公因式3a,进而分解因式得出即可;(2)直接提取公因式x,进而利用平方差公式分解因式得出即可;(3)直接提取公因式3a,进而利用完全平方公式分解因式得出即可;(4)直接提取公因式(x﹣y),进而利用平方差公式分解因式得出即可.【解答】解:(1)9a3﹣6a2+3a=3a(3a2﹣2a+1);(2)x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;(4)a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).45.(南江县校级期中)因式分解①4x2y2﹣9②2x3﹣4x2y+2xy2③4a2b2﹣(a2+b2)2④(x﹣y)2+4xy⑤x(m﹣x)(m﹣y)﹣m(x﹣m)(y﹣m)⑥xm+1﹣xm﹣1.【分析】①原式利用平方差公式分解即可;②原式提取公因式,再利用完全平方公式分解即可;③原式利用平方差公式及完全平方公式分解即可;④原式利用完全平方公式分解即可;⑤原式提取公因式即可得到结果;⑥原式提取公因式,再利用平方差公式分解即可.【解答】解:①原式=(2xy+3)(2xy﹣3);②原式=2x(x2﹣2xy+y2)=2x(x﹣y)2;③原式=(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年笔记本电脑借用协议3篇
- 2024标准房屋场地租赁合同范本
- 2024年赛事策划与执行合同
- 2024正规保洁员培训与劳动合同3篇
- 2025年度旅游区虫害防治与游客安全保障合同3篇
- 2024年高清晰相机选购合同3篇
- 2024年药品研发与许可协议3篇
- 浙江工业大学《自动变速器》2023-2024学年第一学期期末试卷
- 2024无子女夫妻自愿离婚协议书:离婚后共同房产处理与归属3篇
- 舞蹈服务员工作总结
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 《数学广角-优化》说课稿-2024-2025学年四年级上册数学人教版
- “懂你”(原题+解题+范文+话题+技巧+阅读类素材)-2025年中考语文一轮复习之写作
- 2025年景观照明项目可行性分析报告
- 《小学生良好书写习惯培养的研究》中期报告
- 2025年江苏南京地铁集团招聘笔试参考题库含答案解析
- 2025年度爱读书学长参与的读书项目投资合同
- 大学英语四级词汇表(下载)
- 2025年四川成都市温江区市场监督管理局选聘编外专业技术人员20人历年管理单位笔试遴选500模拟题附带答案详解
- 手术室发生地震应急预案演练
评论
0/150
提交评论