2025届山西省运城市临猗县临晋中学数学高二上期末统考试题含解析_第1页
2025届山西省运城市临猗县临晋中学数学高二上期末统考试题含解析_第2页
2025届山西省运城市临猗县临晋中学数学高二上期末统考试题含解析_第3页
2025届山西省运城市临猗县临晋中学数学高二上期末统考试题含解析_第4页
2025届山西省运城市临猗县临晋中学数学高二上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省运城市临猗县临晋中学数学高二上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,,则的公比为()A. B.C. D.2.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.3.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.4.已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是()A B.C. D.5.某大学数学系共有本科生1500人,其中一、二、三、四年级的人数比为,要用分层随机抽样的方法从中抽取一个容量为300的样本,则应抽取的三年级学生的人数为()A.20 B.40C.60 D.806.如图,在正方体中,,,,若为的中点,在上,且,则等于()A. B.C. D.7.①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数为()A.0 B.1C.2 D.38.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆离心率为()A. B.C. D.9.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A. B.C. D.10.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件11.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.1012.如图,在长方体中,,E,F分别为的中点,则异面直线与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______14.已知对任意正实数m,n,p,q,有如下结论成立:若,则有成立,现已知椭圆上存在一点P,,为其焦点,在中,,,则椭圆的离心率为______15.将由2,5,8,11,14,…组成的等差数列,按顺序写在练习本上,已知每行写13个,每页有21行,则5555在第______页第______行.(用数字作答)16.已知圆:和圆:,动圆M同时与圆及圆外切,则动圆的圆心M的轨迹方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.18.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积19.(12分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.20.(12分)(1)叙述正弦定理;(2)在△中,应用正弦定理判断“”是“”成立的什么条件,并加以证明.21.(12分)已知数列的前项和为,且.数列是等比数列,,(1)求,的通项公式;(2)求数列的前项和22.(10分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.2、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.3、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B4、B【解析】根据导数的几何意义,求出切线方程,求出切线和横截距a和纵截距b,面积为【详解】由题意可得,所以,则所求切线方程为令,得;令,得故所求三角形的面积为故选:B5、C【解析】根据给定条件利用分层抽样的抽样比直接计算作答.【详解】依题意,三年级学生的总人数为,从1500人中用分层随机抽样抽取容量为300的样本的抽样比为,所以应抽取的三年级学生的人数为.故选:C6、B【解析】利用空间向量的加减法、数乘运算推导即可.【详解】.故选:B.7、B【解析】写出逆命题判断①;写出逆否命题判断②;写出否命题判断③.【详解】①:“若,则互为相反数”的逆命题为:“若互为相反数,则”,是真命题;②:“若,则”的逆否命题为:“若,则”.因为当时,有,但不成立.故“若,则”是假命题.③:“若,则”的否命题为:“若,则”.因为当时,有,但是,即不成立.故“若,则”是假命题..故选:B8、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.9、D【解析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线的方程【详解】由题可知,抛物线焦点为,所以直线的方程为,即直线的斜率为,又双曲线的渐近线的方程为,所以,,因为,解得故选:【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题10、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.11、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.12、A【解析】利用平行线,将异面直线的夹角问题转化为共面直线的夹角问题,再解三角形.【详解】取BC中点H,BH中点I,连接AI、FI、,因为E为中点,在长方体中,,所以四边形是平行四边形,所以所以,又因为F为的中点,所以,所以,则即为异面直线与所成角(或其补角).设AB=BC=4,则,则,,根据勾股定理:,,,所以是等腰三角形,所以.故B,C,D错误.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.14、【解析】根据正弦定理,结合题意,列出方程,代入数据,化简即可得答案.详解】由题意得:,所以,所以,解得.故答案为:15、①.7②.17【解析】首先求出等差数列的通项公式,即可得到为第项,再根据每行每页的项数计算可得;【详解】解:由2,5,8,11,14,…组成的等差数列的通项公式为,令,解得又,,.所以555在第7页第17行故答案为:;16、【解析】根据动圆同时与圆及圆外切,即可得到几何关系,再结合双曲线的定义可得动点的轨迹方程.【详解】由题,设动圆的半径为,圆的半径为,圆的半径为,当动圆与圆,圆外切时,,,所以,因为圆心,,即,又根据双曲线的定义,得动点的轨迹为双曲线的上支,其中,,所以,则动圆圆心的轨迹方程是;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)接BO,由是等边三角形得,由得出,再利用线面垂直的判断定理可得平面;(2)建立以为坐标原点,分别为轴的空间直角坐标系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小问1详解】连接BO,由已知△ABC是以AC为底的等腰直角三角形,且PA=PB=PC=AC=4,O为AC的中点,则是等边三角形,,,在中,,满足,即是直角三角形,则,又,平面,所以平面.【小问2详解】建立以为坐标原点,分别为轴的空间直角坐标系如图所示,则,,,,则平面的法向量为,由已知,得到点坐标,,设平面的法向量则,令,则,即,设平面MAP与平面CAP所成角为,则,则平面MAP与平面CAP所成角为.18、(1)证明见解析(2)【解析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题意得四边形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小问2详解】过点A作AE⊥BC于E,易知E为BC中点,以A为原点,AE,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,则,,,.则设,.显然,是平面ACD的一个法向量,设平面MAC的一个法向量为.则有,取,解得由二面角M﹣AC﹣D的余弦值为,有,解得,所以M为PD中点.所以19、(1);(2)或.【解析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆方程联立方程组,消去,整理后利用根与系的关系可得,,再由OM⊥ON,可得x1x2+y1y2=0,从而可列出关于的方程,进而可求出的值,即可得到直线的方程【详解】(1)由条件知,解得,则故椭圆的方程为(2)显然直线l的斜率存在,且斜率不为0,设直线l:x=my+4交椭圆C于M(x1,y1),N(x2,y2),由,当=(24m)2-4(3m2+4)×36>0时,有,,由条件OM⊥ON可得,,即x1x2+y1y2=0,从而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且满足>0从而直线l方程为或20、(1)正弦定理见解析;(2)充要条件,证明见解析【解析】(1)用语言描述正弦定理,并用公式表达正弦定理(2)利用“大角对大边”的性质,并根据正弦定理进行边角互化即可【详解】(1)正弦定理:在任意一个三角形中,各边和它所对角的正弦值之比相等且等于这个三角形外接圆的直径,即.(2)是充要条件.证明如下:充分性:又故有:必要性:又综上,是的充要条件21、(1),(2)【解析】(1)利用求出通项公式,根据已知求出公比即可得出的通项公式;(2)利用错位相减法可求解.【小问1详解】因为数列的前项和为,且,当时,,当时,,满足,所以,设等比数列的公比为,因为,,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论