2025届山东济宁市兖州区数学高二上期末教学质量检测模拟试题含解析_第1页
2025届山东济宁市兖州区数学高二上期末教学质量检测模拟试题含解析_第2页
2025届山东济宁市兖州区数学高二上期末教学质量检测模拟试题含解析_第3页
2025届山东济宁市兖州区数学高二上期末教学质量检测模拟试题含解析_第4页
2025届山东济宁市兖州区数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东济宁市兖州区数学高二上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线2.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.3.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.4.已知点、是双曲线C:的左、右焦点,P是C左支上一点,若直线的斜率为2,且为直角三角形,则双曲线C的离心率为()A.2 B.C. D.5.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.6.已知椭圆的左、右焦点分别是,焦距,过点的直线与椭圆交于两点,若,且,则椭圆C的方程为()A. B.C. D.7.已知曲线与直线总有公共点,则m的取值范围是()A. B.C. D.8.已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A. B.C. D.9.若等差数列,其前n项和为,,,则()A.10 B.12C.14 D.1610.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.411.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.12.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:y2=2px过点P(1,1):①点P到抛物线焦点的距离为②过点P作过抛物线焦点的直线交抛物线于点Q,则△OPQ的面积为③过点P与抛物线相切的直线方程为x-2y+1=0④过点P作两条斜率互为相反数的直线交抛物线于M,N两点,则直线MN的斜率为定值其中正确的是________.14.已知曲线,①若,则是椭圆,其焦点在轴上;②若,则是圆,其半径为;③若,则是双曲线,其渐近线方程为;④若,,则是两条直线.以上四个命题,其中正确的序号为_________.15.已知正方形的边长为2,对部分以为轴进行翻折,翻折到,使二面角的平面角为直二面角,则___________.16.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆过点,且离心率.(1)求椭圆的方程;(2)直线的斜率为,直线l与椭圆交于两点,求的面积的最大值.18.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值19.(12分)已知三角形的三个顶点是,,(1)求边上的中线所在直线的方程;(2)求边上的高所在直线的方程20.(12分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积21.(12分)已知四棱锥的底面是矩形,底面,且,设E、F、G分别为PC、BC、CD的中点,H为EG的中点,如图.(1)求证:平面;(2)求直线FH与平面所成角的大小.22.(10分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D2、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.3、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.4、B【解析】根据双曲线的定义和勾股定理利用即可得离心率.【详解】∵直线的斜率为2,为直角三角形,∴,又,∴,.∵,即,∴故选:B.5、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.6、A【解析】画出图形,利用已知条件,推出,延长交椭圆于点,得到直角和直角,设,则,根据椭圆的定义转化求解,即可求得椭圆的方程.【详解】如图所示,,则,延长交椭圆于点,可得直角和直角,设,则,根据椭圆的定义,可得,在直角中,,解得,又在中,,代入可得,所以,所以椭圆的方程为.故选:A.7、D【解析】对曲线化简可知曲线表示以点为圆心,2为半径的圆的下半部分,对直线方程化简可得直线过定点,画出图形,由图可知,,然后求出直线的斜率即可【详解】由,得,因为,所以曲线表示以点为圆心,2为半径的圆的下半部分,由,得,所以,得,所以直线过定点,如图所示设曲线与轴的两个交点分别为,直线过定点,为曲线上一动点,根据图可知,若曲线与直线总有公共点,则,得,设直线为,则,解得,或,所以,所以,所以,故选:D8、B【解析】利用直线与平面,平面与平面的位置关系判断2个命题的真假,再利用复合命题的真值表判断选项的正误即可【详解】,表示两条不同直线,,表示两个不同平面:若,,则也可能,也可能与相交,所以是假命题,为真命题;:令直线的方向向量为,直线的方向向量为,若,则,则,所以是真命题,所以为假命题;所以为假命题,是真命题,为假命题,是真命题,所以为假命题故选:9、B【解析】由等差数列前项和的性质计算即可.【详解】由等差数列前项和的性质可得成等差数列,,即,得.故选:B.10、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题11、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.12、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、②③④【解析】由抛物线过点可得抛物线的方程,求出焦点的坐标及准线方程,由抛物线的性质可判断①;求出直线的方程与抛物线联立切线的坐标,进而求出三角形的面积,判断②;设直线方程为y-1=k(x-1),与y2=x联立求得斜率,进而可得在处的切线方程,从而判断③;设直线的方程为抛物线联立求出的坐标,同理求出的坐标,进而求出直线的斜率,从而可判断④【详解】解:由抛物线过点,所以,所以,所以抛物线的方程为:;可得抛物线的焦点的坐标为:,,准线方程为:,对于①,由抛物线的性质可得到焦点的距离为,故①错误;对于②,可得直线的斜率,所以直线的方程为:,代入抛物线的方程可得:,解得,所以,故②正确;对于③,依题意斜率存在,设直线方程为y-1=k(x-1),与y2=x联立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切线方程为x-2y+1=0,故③正确;对于④,设直线的方程为:,与抛物线联立可得,所以,所以,代入直线中可得,即,,直线的方程为:,代入抛物线的方程,可得,代入直线的方程可得,所以,,所以为定值,故④正确故答案为:②③④.14、①③④【解析】通过m,n的取值判断焦点坐标所在轴,判断①,求出圆的半径判断②;通过求解双曲线的渐近线方程,判断③;利用,,判断曲线是否是两条直线判断④【详解】解:①若,则,因为方程化为:,焦点坐标在y轴,所以①正确;②若,则C是圆,其半径为:,不一定是,所以②不正确;③若,则C是双曲线,其渐近线方程为,化简可得,所以③正确;④若,,方程化为,则C是两条直线,所以④正确;故答案为:①③④15、-2【解析】根据,则,根据条件求得向量夹角即可求得结果.【详解】由题知,,取的中点O,连接,如图所示,则,又二面角的平面角为直二面角,则,又,则,为等边三角形,从而,则,故答案为:-216、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2.【解析】(1)由离心率,得到,再由点在椭圆上,得到,联立求得,即可求得椭圆的方程.(2)设的方程为,联立方程组,根据根系数的关系和弦长公式,以及点到直线的距离公式,求得,结合基本不等式,即可求解.【详解】(1)由题意,椭圆的离心率,即,可得,又椭圆过点,可得,将代入,可得,故椭圆方程为.(2)设的方程为,设点,联立方程组,消去y整理,得,所以,又直线与椭圆相交,所以,解得,则,点P到直线的距离,所以,当且仅当,即时,的面积取得最大值为2.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.18、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.19、(1);(2)【解析】(1)先求出BC的中点坐标,再利用两点式求出直线的方程;(2)先求出BC边上的高所在直线的斜率,再利用点斜式求出直线的方程.【详解】(1)设线段的中点为因为,,所以的中点,所以边上的中线所在直线的方程为,即(2)因为,,所以边所在直线的斜率,所以边上的高所在直线的斜率为,所以边上的高所在直线的方程为,即【点睛】本题主要考查直线方程的求法,属于基础题.20、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,因为AB平面,所以平面平面.(2)取AB中点G,连结EG,FG,因为E,F分别是、的中点,所以FG∥AC,且FG=AC,因为AC∥,且AC=,所以FG∥,且FG=,所以四边形为平行四边形,所以EG,又因为EG平面ABE,平面ABE,所以平面.(3)因为=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱锥的体积为:==.考点:本小题主要考查直线与直线、直线与平面、平面与平面的垂直与平行的证明;考查几何体的体积的求解等基础知识,考查同学们的空间想象能力、推理论证能力、运算求解能力、逻辑推理能力,考查数形结合思想、化归与转化思想21、(1)证明见解析(2)【解析】(1)连接CH,延长交PD于点K,连接BK,根据E、F、G分别为PC、BC、CD的中点,易得,再利用线面平行的判定定理证明.(2)建立空间直角坐标,求得的坐标,平面PBC一个法向量,代入公式求解.【详解】(1)如图所示:连接CH,延长交PD于点K,连接BK,因为设E、F、G分别为PC、BC、CD的中点,所以H为CK的中点,所以,又平面平面,所以平面;(2)建立如图所示直角坐标系则,所以,设平面PBC一个法向量为:,则,有,令,,设直线F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论