版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省怀化三中2025届高一上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则2.函数的最小正周期为()A. B.C. D.3.已知函数,若(其中.),则的最小值为()A. B.C.2 D.44.已如集合,,,则()A. B.C. D.5.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1156.已知,,,则下列判断正确是()A. B.C. D.7.已知棱长为3的正方体ABCD﹣A1B1C1D1内部有一圆柱,此圆柱恰好以直线AC1为轴,则该圆柱侧面积的最大值为()A.92πC.23π8.函数(且)的图像恒过定点()A. B.C. D.9.已知,是不共线的向量,,,,若,,三点共线,则实数的值为()A. B.10C. D.510.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则该函数定义域为_________12.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.13.若函数部分图象如图所示,则此函数的解析式为______.14.函数满足,则值为_____.15.已知集合,集合,则________16.1881年英国数学家约翰·维恩发明了Venn图,用来直观表示集合之间的关系.全集,集合,的关系如图所示,其中区域Ⅰ,Ⅱ构成M,区域Ⅱ,Ⅲ构成N.若区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过三个点.(1)求圆的方程;(2)过原点的动直线与圆相交于不同的两点,求线段的中点的轨迹.18.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式19.已知向量,,,求:(1),;(2)20.在△中,的对边分别是,已知,.(1)若△的面积等于,求;(2)若,求△的面积.21.计划建造一个室内面积为1500平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为米,两个养殖池的总面积为平方米,如图所示:(1)将表示为的函数,并写出定义域;(2)当取何值时,取最大值?最大值是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C2、C【解析】根据正弦型函数周期的求法即可得到答案.【详解】故选:C.3、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B4、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.5、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D6、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.7、A【解析】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,即可得出结论【详解】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在线段AB1,AC,AD1上,设线段AB1上的切点为E,AC1∩面A1BD=O2,圆柱上底面的圆心为O1,半径即为O1E=r,则AO2=13AC1=1332+32+3故选A【点睛】本题考查求圆柱侧面积的最大值,考查正方体与圆柱的内切问题,考查学生空间想象与分析解决问题的能力,属于中档题8、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.9、A【解析】由向量的线性运算,求得,根据三点共线,得到,列出方程组,即可求解.【详解】由,,可得,因为,,三点共线,所以,所以存在唯一的实数,使得,即,所以,解得,.故选:A.10、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,即可求出结果.【详解】因为,所以,解得,所以该函数定义域为.故答案为【点睛】本题主要考查函数的定义域,根据正切函数的定义域,即可得出结果,属于基础题型.12、①.②.【解析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;13、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.14、【解析】求得后,由可得结果.【详解】,,.故答案为:.15、【解析】由交集定义计算【详解】由题意故答案为:16、【解析】由,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则或解不等式组即可【详解】由,又区域Ⅰ,Ⅱ,Ⅲ表示的集合均不是空集,则或解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设圆的方程为,列出方程组,求得的值,即可求得圆的方程;(2)根据题意得到,得出在以为直径的圆上,得到以为直径的圆的方程,再联立两圆的方程组,求得交点坐标,即可得到点的轨迹方程.【小问1详解】解:设圆的方程为,因为圆过三个点,可得,解得,所以圆的方程为,即.【小问2详解】解:因为为线段的中点,且,所以在以为直径的圆上,以为直径的圆的方程为,联立方程组,解得或,所以点的轨迹方程为.18、(1);(2)奇函数,理由见解析;(3).【解析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.19、(1),(2)【解析】(1)利用向量的坐标运算即得;(2)利用向量模长的坐标公式即求.【小问1详解】∵向量,,,所以,.【小问2详解】∵,,∴,所以20、(1);(2).【解析】(1)先根据条件可得到,由三角形的面积可得,与联立得到方程组后可解得.(2)由可得,分和两种情况分别求解,最后可得的面积为试题解析:(1)∵,,∴,∴,又,∴,∵△的面积,∴,由,解得.(2)由,得得,∴或①当时,则,由(1)知,,又∴.∴;②当时,则,代入,得,,∴.综上可得△的面积为.点睛:解答本题(2)时,在得到后容易出现的错误是将直接约掉,这样便失掉了三角形的一种情况,这是在三角变换中经常出现的一种错误.为此在判断三角形的形状或进行三角变换时,在遇到需要约分的情况时,需要考虑约掉的部分是否为零,不要随意的约掉等式两边的公共部分21、(1),定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《食品检测培训》课件
- 2024年度网络安全保障合同标的(详尽版)
- 2024年国庆民航数据小结-航班管家
- 04版第三方停车场租赁与权益维护协议3篇
- 2024年度企业产品供应链优化合同
- 高效会议管理技巧课件
- 2024年度影视制作服务采购合同3篇
- 2024中国电信湖北恩施分公司招聘17人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国建筑第二工程局限公司北京分公司招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国华电集团限公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 《内科学》全册配套教学课件
- 《小米手机营销策略研究开题报告(含提纲)》
- 工程教育认证学校培训试题含答案
- 1茶叶生物化学-第一章-茶叶中的化学成分及其性质课件
- 【医疗】急诊预检分诊专家共识课件
- 学校校长通讯录
- 住院医师规范化培训(全科专业)基层基地建设汇报课件
- 私人财富配置和传承的法律智慧课件
- 软件工程系统设计报告书
- 外挑水平防护网方案
- (新版)供电可靠性(初级)理论普考题库及答案汇总-下(判断题)
评论
0/150
提交评论