




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省百校高二数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.32.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.3.在等比数列中,,是方程的两个实根,则()A.-1 B.1C.-3 D.34.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.5.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.6.设等差数列的公差为d,且,则()A.12 B.4C.6 D.87.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-28.已知直线,,若,则实数()A. B.C.1 D.29.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.410.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.11.过抛物线的焦点作直线l,交抛物线与A、B两点,若线段中点的纵坐标为3,则等于()A.10 B.8C.6 D.412.已知向量为平面的法向量,点在内,点在外,则点到平面的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则_____________14.已知点,则线段的垂直平分线的一般式方程为__________.15.过点,且周长最小的圆的标准方程为______16.已知抛物线的顶点为O,焦点为F,动点B在C上,若点B,O,F构成一个斜三角形,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的两焦点为、,P为椭圆上一点,且(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积18.(12分)已知抛物线C的方程是.(1)求C的焦点坐标和准线方程;(2)直线l过抛物线C的焦点且倾斜角为,与抛物线C的交点为A,B,求的长度.19.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率20.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数21.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,22.(10分)某快递公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)在这60天中包裹件数在和的两组中,用分层抽样的方法抽取30件,求在这两组中应分别抽取多少件?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C2、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响3、B【解析】由韦达定理可知,结合等比中项的性质可求出.【详解】解:在等比数列中,由题意知:,,所以,,所以且,即.故选:B.4、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B5、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.6、B【解析】利用等差数列的通项公式的基本量计算求出公差.【详解】,所以.故选:B7、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D8、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.9、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B10、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得11、B【解析】根据抛物线的定义求解【详解】抛物线的焦点为,准线方程为,设,则,所以,故选:B12、A【解析】先求出向量,再利用空间向量中点到平面的距离公式即可求解.【详解】解:由题知,点在内,点在外,所以又向量为平面的法向量所以点到平面的距离为:故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由共线向量得,解方程即可.【详解】因为,所以,解得.故答案为:214、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:15、【解析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为16、2【解析】画出简单示意图,令,根据抛物线定义可得,应用数形结合及B在C上,求目标式的值.【详解】如下图,令,直线为抛物线准线,轴,由抛物线定义知:,又且,所以,故,又,故.故答案为:2.【点睛】关键点点睛:应用抛物线的定义将转化为,再由三角函数的定义及点在抛物线上求值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题可得,根据椭圆的定义,求得,进而求得的值,即可求解;(2)由题可得直线方程为,联立椭圆方程可得点P,利用三角形的面积公式,即求.【小问1详解】设椭圆的标准方程为,焦距为,由题可得,,所以,可得,即,则,所以椭圆的标准方程为【小问2详解】设点坐标为,,,∵,∴所在的直线方程为,则解方程组,可得,∴.18、(1)焦点为,准线方程:(2)【解析】(1)抛物线的标准方程为,焦点在轴上,开口向右,,即可求出抛物线的焦点坐标和准线方程;(2)现根据题意给出直线的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可【小问1详解】(1)抛物线的标准方程是,焦点在轴上,开口向右,,∴,∴焦点为,准线方程:.【小问2详解】∵直线l过抛物线C的焦点且倾斜角为,,∴直线L的方程为,代入抛物线化简得,设,则,所以故所求的弦长为1219、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为20、(1)证明见解析;(2)证明见解析,1个零点.【解析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【点睛】本题关键是是将方程零点问题转化为方程解的问题,通过讨论单调性和最值(极值)的正负即可判断零点的有无和个数.21、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 康复辅具的跨国合作与市场准入考核试卷
- 木材切割精度控制技术考核试卷
- 停车设备行业营销策略与渠道建设考核试卷
- 图书、报刊行业风险管理考核试卷
- 电工培训课件
- 再生物资回收在气候变化适应策略中的应用考核试卷
- 家居纺织品的文化与艺术欣赏考核试卷
- 土地利用规划中的乡村景观规划考核试卷
- 快递商铺转让合同范本
- 采购合作合同范本
- 2023年新改版教科版五年级下册科学全册教案(附知识点)
- 固定式塔式起重机基础设计及计算
- 奶牛性控冻精的使用细则:张相文 整理
- GB/T 34376-2017数控板料折弯机技术条件
- GB/T 22492-2008大豆肽粉
- 三年级下册竖式脱式计算
- 《财务风险的识别与评估管理国内外文献综述》
- 海口市存量房买卖合同模板(范本)
- 经典文学作品中的女性形象研究外文文献翻译2016年
- 高炉煤气安全知识的培训
- 2008 年全国高校俄语专业四级水平测试试卷
评论
0/150
提交评论