2025届河北省衡水市十三中数学高三第一学期期末检测模拟试题含解析_第1页
2025届河北省衡水市十三中数学高三第一学期期末检测模拟试题含解析_第2页
2025届河北省衡水市十三中数学高三第一学期期末检测模拟试题含解析_第3页
2025届河北省衡水市十三中数学高三第一学期期末检测模拟试题含解析_第4页
2025届河北省衡水市十三中数学高三第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省衡水市十三中数学高三第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.函数在的图象大致为()A. B.C. D.3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.4.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.5.已知复数满足:,则的共轭复数为()A. B. C. D.6.设是等差数列的前n项和,且,则()A. B. C.1 D.27.已知随机变量的分布列是则()A. B. C. D.8.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.9.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.810.设,则复数的模等于()A. B. C. D.11.已知函数,则方程的实数根的个数是()A. B. C. D.12.己知函数的图象与直线恰有四个公共点,其中,则()A. B.0 C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知内角,,的对边分别为,,.,,则_________.14.过圆的圆心且与直线垂直的直线方程为__________.15.设等比数列的前项和为,若,,则__________.16.实数满足,则的最大值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面.求证:平面;若,,求证:平面平面.18.(12分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.19.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线①,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.20.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.21.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)直线的极坐标方程为,连接并延长交于,求的最大值.22.(10分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

设成立;反之,满足,但,故选A.2、B【解析】

先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.3、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.4、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.5、B【解析】

转化,为,利用复数的除法化简,即得解【详解】复数满足:所以故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.6、C【解析】

利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.7、C【解析】

利用分布列求出,求出期望,再利用期望的性质可求得结果.【详解】由分布列的性质可得,得,所以,,因此,.故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.8、C【解析】

连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.9、B【解析】

取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,,,即.,,,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.10、C【解析】

利用复数的除法运算法则进行化简,再由复数模的定义求解即可.【详解】因为,所以,由复数模的定义知,.故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.11、D【解析】

画出函数,将方程看作交点个数,运用图象判断根的个数.【详解】画出函数令有两解,则分别有3个,2个解,故方程的实数根的个数是3+2=5个故选:D【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.12、A【解析】

先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【详解】函数即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,,因为,故,所以.故选:A.【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【详解】由正弦定理得,,.故答案为:.【点睛】本题考查了正弦定理求角,三角恒等变换,属于基础题.14、【解析】

根据与已知直线垂直关系,设出所求直线方程,将已知圆圆心坐标代入,即可求解.【详解】圆心为,所求直线与直线垂直,设为,圆心代入,可得,所以所求的直线方程为.故答案为:.【点睛】本题考查圆的方程、直线方程求法,注意直线垂直关系的灵活应用,属于基础题.15、【解析】

由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解.【详解】由题意,设等比数列的公比为,因为,即,解得,,所以.【点睛】本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题.16、.【解析】

画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如图所示,则当直线过点时直线的截距最大,z取最大值.由同理,,取最大值.故答案为:.【点睛】本题考查线性规划的线性目标函数的最优解问题.线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;证明见解析.【解析】

利用线面平行的判定定理求证即可;为中点,为中点,可得,,,可知,故为直角三角形,,利用面面垂直的判定定理求证即可.【详解】解:证明:为中点,为中点,,又平面,平面,平面;证明:为中点,为中点,,又,,则,故为直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【点睛】本题考查线面平行和面面垂直的判定定理的应用,属于基础题.18、(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根据同角的三角函数的关系和两角和的正弦公式和正弦定理即可求出.【详解】(Ⅰ)由余弦定理,所以,所以,即,因为,所以;(Ⅱ)因为,所以,因为,,由正弦定理得,所以.【点睛】本题考查利用正弦定理与余弦定理解三角形,属于简单题.19、(1)0.0294.(2)应选生产线②.见解析【解析】

(1)由题意转化条件得A工序不出现故障B工序出现故障,利用相互独立事件的概率公式即可得解;(2)分别算出两个生产线增加的生产成本的期望,进而求出两个生产线的生产成本期望值,比较期望值即可得解.【详解】(1)若选择生产线①,生产成本恰好为18万元,即A工序不出现故障B工序出现故障,故所求的概率为.(2)若选择生产线①,设增加的生产成本为(万元),则的可能取值为0,2,3,5.,,,,所以万元;故选生产线①的生产成本期望值为(万元).若选生产线②,设增加的生产成本为(万元),则的可能取值为0,8,5,13.,,,,所以,故选生产线②的生产成本期望值为(万元),故应选生产线②.【点睛】本题考查了相互独立事件的概率,考查了离散型随机变量期望的应用,属于中档题.20、(1),抛物线;(2)存在,.【解析】

(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线的抛物线.(2)不妨设.因为,所以,从而直线PA的斜率为,解得,即,又,所以轴.要使,只需.设直线m的方程为,代入并整理,得.首先,,解得或.其次,设,,则,..故存在直线m,使得,此时直线m的斜率的取值范围为.【点睛】本题考查直线与抛物线位置关系的应用,涉及抛物线中的存在性问题,考查学生的计算能力,是一道中档题.21、(1);(2)【解析】

(1)设的极坐标为,在中,有,即可得结果;(2)设射线:,,圆的极坐标方程为,联立两个方程,可求出,联立可得,则计算可得,利用三角函数的性质可得最值.【详解】(1)设的极坐标为,在中,有,点的轨迹的极坐标方程为;(2)设射线:,,圆的极坐标方程为,由得:,由得:,,,当,即时,,的最大值为.【点睛】本题考查极坐标方程的应用,考查三角函数性质的应用,是中档题.22、(1)见解析;(II).【解析】

试题分析:(1)取中点,连结,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能证明为直角三角形;(2)设,由,得,求出平面的法向量和平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论