版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌外国语学校2025届数学高二上期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万2.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.53.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.4.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.5.已知抛物线上的点到该抛物线焦点的距离为,则抛物线的方程是()A. B.C. D.6.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.7.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=08.抛物线的焦点到其准线的距离是()A.4 B.3C.2 D.19.设的内角的对边分别为的面积,则()A. B.C. D.10.命题“若,则”为真命题,那么不可能是()A. B.C. D.11.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.12.下列双曲线中,渐近线方程为的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.已知平面直角坐标系中各顶点的坐标分别为,,,则其“欧拉线”的方程为___________.14.已知,,,若,则______.15.已知抛物线方程为,则其焦点坐标为__________16.分别过椭圆的左、右焦点、作两条互相垂直的直线、,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围18.(12分)已知抛物线上的点到焦点的距离为6(1)求抛物线的方程;(2)设为抛物线的焦点,直线与抛物线交于,两点,求的面积19.(12分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.20.(12分)在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知,曲线与曲线相交于A,B两点,求.21.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,22.(10分)已知函数,为的导函数(1)求的定义域和导函数;(2)当时,求函数的单调区间;(3)若对,都有成立,且存在,使成立,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.2、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C3、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.4、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B5、B【解析】由抛物线知识得出准线方程,再由点到焦点的距离等于其到准线的距离求出,从而得出方程.【详解】由题意知,则准线为,点到焦点的距离等于其到准线的距离,即,∴,则故选:B.6、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.7、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A8、C【解析】由抛物线焦点到准线的距离为求解即可.【详解】因为抛物线焦点到准线的距离为,故抛物线的焦点到其准线的距离是2.故选:C【点睛】本题主要考查了抛物线的标准方程中的几何意义,属于基础题型.9、A【解析】利用三角形面积公式、二倍角正弦公式有,再由三角形内角的性质及余弦定理化简求即可.【详解】由,∴,在中,,∴,解得.故选:A.10、D【解析】根据命题真假的判断,对四个选项一一验证即可.【详解】对于A:若,则必成立;对于B:若,则必成立;对于C:若,则必成立;对于D:由不能得出,所以不可能是.故选:D11、C【解析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.12、A【解析】由双曲线的渐进线的公式可行选项A的渐进线方程为,故选A.考点:本题主要考查双曲线的渐近线公式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意知是直角三角形,即可写出垂心、外心的坐标,进而可得“欧拉线”的方程.【详解】由题设知:是直角三角形,则垂心为直角顶点,外心为斜边的中点,∴“欧拉线”的方程为.故答案为:.14、【解析】根据题意,由向量坐标表示,列出方程,求出,,即可得出结果.【详解】因为,,,若,则,解得,所以.故答案为:.【点睛】本题主要考查由向量坐标表示求参数,属于基础题型.15、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.16、【解析】根据条件可知以为直径的圆在椭圆的内部,可得,再根据,即可求得离心率的取值范围.【详解】根据条件可知,以为直径的圆与椭圆没有交点,即,即,,即.故填:.【点睛】本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据直接求,2.根据条件建立关于的齐次方程求解,3.根据几何关系找到的等量关系求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)18、(1)(2)【解析】(1)根据焦半径公式可求,从而可求抛物线的方程.(2)求出的长度后可求的面积.【小问1详解】因为,所以,故抛物线方程为:.【小问2详解】设,且,由可得,故或,故,故,故,而到直线的距离为,故的面积为19、(1)(2)证明见解析,(3)【解析】(1)根据等比数列列出方程组求解首项、公比即可得解;(2)化简后得,可证明数列是等差数列,即可得出,再求出即可;(3)利用错位相减法求出数列的和.【小问1详解】设公比为,由条件可知,,所以;【小问2详解】,又,所以,所以数列是以为首项,为公差等差数列,所以,所以.【小问3详解】,,两式相减可得,,.20、(1),(2)2【解析】(1)消参数即可得曲线的普通方程,利用极坐标方程与直角坐标方程之间的转化关系式,从而曲线的直角坐标方程;(2)将的参数方程代入的直角坐标方程,得关于的一元二次方程,由韦达定理得,即可得的值.【小问1详解】由,消去参数,得,即,所以曲线的普通方程为.由,得,即,所以曲线的直角坐标方程为【小问2详解】将代入,整理得,则,令方程的两个根为由韦达定理得,所以.21、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得,令得,化简得,设,则,又,故,即.综上所述,.22、(1),(2)在单减,也单减,无增区间(3)【解析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对,都有成立,即,即,令,,只要即可,利用导数求出函数的最小值即可求出的范围,,,求出函数的值域,根据存在,使成立,则0在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁期满后购买选择权的合同条款
- 2024年度企业间借款合同的还款来源保障3篇
- 2024年度大连市环保服务合同
- 2024经营合同股份有限公司合并合同范本
- 2024模具加工合同范文
- 2024年度保险经纪服务-合作协议
- 2024年度切削液市场开发与代理销售合同3篇
- 2024年度合作开发合同标的为新能源技术的协议3篇
- 聘请司机合同协议
- 公司法人之间的借款协议
- 社团面试评分表
- 智慧园区 物流基地集装箱货堆场智能管理平台建设方案
- 血清转氨酶异常病因分析
- DB37T 4243-2020 单井地热资源储量评价技术规程
- PDCA提高护理管道标识规范率
- 世界未解之谜英文版
- 中小跨径公路桥梁设计课件
- 放射培训考试习题及答案
- 硫磺制酸工艺
- 译林牛津版9A-Unit8-Detective-Stories-Reading-2公开课优质课件
- 邯郸市政府采购办事指南
评论
0/150
提交评论