安徽省舒城桃溪中学2025届高一数学第一学期期末联考模拟试题含解析_第1页
安徽省舒城桃溪中学2025届高一数学第一学期期末联考模拟试题含解析_第2页
安徽省舒城桃溪中学2025届高一数学第一学期期末联考模拟试题含解析_第3页
安徽省舒城桃溪中学2025届高一数学第一学期期末联考模拟试题含解析_第4页
安徽省舒城桃溪中学2025届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省舒城桃溪中学2025届高一数学第一学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数fx=x+a,x≤0,x2,x>0,那么“a=0”是A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.3.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.4.已知函数则函数的最大值是A.4 B.3C.5 D.5.若,的终边(均不在y轴上)关于x轴对称,则()A. B.C. D.6.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.7.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行8.函数的定义域是()A. B.C. D.9.若直线过点,,则此直线的倾斜角是()A.30° B.45°C.60° D.90°10.已知函数是定义域为奇函数,当时,,则不等式的解集为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,则它的单调递增区间为______12.已知sinα+cosα=,α∈(-π,0),则tanα=________.13.函数最小正周期是________________14.在半径为5的圆中,的圆心角所对的扇形的面积为_______.15.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.16.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合,集合.(1)若,求实数的取值范围;(2)命题,命题,若是的必要不充分条件,求实数的取值范围.18.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围19.过圆内一点P(3,1)作弦AB,当|AB|最短时,求弦长|AB|.20.已知函数.(1)求的周期和单调区间;(2)若,,求的值.21.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用充分条件和必要条件的定义判断.【详解】当a=0时,fx=x,x≤0当函数fx是增函数时,则a≤0故选:A2、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值3、B【解析】利用交集定义直接求解【详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【点睛】本题考查交集的求法,考查交集定义,是基础题4、B【解析】,从而当时,∴的最大值是考点:与三角函数有关的最值问题5、A【解析】因为,的终边(均不在轴上)关于轴对称,则,,然后利用诱导公式对应各个选项逐个判断即可求解【详解】因为,的终边(均不在轴上)关于轴对称,则,,选项,故正确,选项,故错误,选项,故错误,选项,故错误,故选:6、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目7、C【解析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.8、D【解析】由函数解析式有意义可得出关于实数的不等式组,由此可求得原函数的定义域.【详解】函数有意义,只需且,解得且因此,函数的定义域为.故选:D.9、A【解析】根据两点求解直线的斜率,然后利用斜率求解倾斜角.【详解】因为直线过点,,所以直线的斜率为;所以直线的倾斜角是30°,故选:A.10、A【解析】根据题意,由函数的解析式分析可得在为增函数且,结合函数的奇偶性分析可得在上为增函数,又由,则有,解可得的取值范围,即可得答案.【详解】根据题意,当时,,则在为增函数且,又由是定义在上的奇函数,则在上也为增函数,则在上为增函数,由,则有,解得:,即不等式的解集为;故选:A【点睛】本题考查函数奇偶性与单调性结合,解抽象函数不等式,有一定难度.二、填空题:本大题共6小题,每小题5分,共30分。11、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为12、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.13、【解析】根据三角函数周期计算公式得出结果.【详解】函数的最小正周期是故答案为:14、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.15、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:16、(1)(2),【解析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据分式不等式的解法求出集合,利用集合间的基本关系即可求得的取值范围;(2)根据必要不充分条件的定义可得,由一元二次不等式的解法求出集合,利用集合间的基本关系即可求出a的取值范围.【小问1详解】解:解不等式得或,所以或,因为,所以所以或,解得或,所以实数的取值范围为或.【小问2详解】解:是的必要不充分条件,所以,解不等式,得,所以,所以且,解得,所以实数的取值范围.18、(1)(2)【解析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单调递增,在上单调递减,且当时,由正弦函数图象可知,解得,故实数的取值范围是19、.【解析】考虑直线AB的斜率不存在时,求出A,B坐标,得到,当直线AB的斜率存在时,圆的圆心(4,2),半径r=3,圆心(4,2)到直线AB的距离为:,利用勾股定理基本不不等式即可求出圆的最短的弦长【详解】(1)当直线AB的斜率不存在时,,所以(2)当直线AB的斜率存在时,圆心(4,2)到直线AB的距离为:,即,当时取得最小值7,弦长的最小值为.综上弦长的最小值为.【点睛】本题考查圆的最短弦长的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用20、(1)周期为,增区间为,减区间为;(2).【解析】(1)利用三角恒等变换思想可得出,利用周期公式可求出函数的周期,分别解不等式和,可得出该函数的增区间和减区间;(2)由可得出,利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式可求出的值.详解】(1),所以,函数的周期为,令,解得;令,解得.因此,函数的增区间为,减区间为;(2),,,,,.【点睛】本题考查正弦型函数周期和单调区间的求解,同时也考查了利用两角差的余弦公式求值,考查运算求解能力,属于中等题.21、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论