四川省广安市武胜烈面中学2025届高二数学第一学期期末学业质量监测试题含解析_第1页
四川省广安市武胜烈面中学2025届高二数学第一学期期末学业质量监测试题含解析_第2页
四川省广安市武胜烈面中学2025届高二数学第一学期期末学业质量监测试题含解析_第3页
四川省广安市武胜烈面中学2025届高二数学第一学期期末学业质量监测试题含解析_第4页
四川省广安市武胜烈面中学2025届高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安市武胜烈面中学2025届高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.2.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.3.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.04.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.5.某四面体的三视图如图所示,该四面体的表面积为()A. B.C. D.6.若函数的图象如图所示,则函数的导函数的图象可能是()A. B.C D.7.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.8.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列9.已知点P是圆上一点,则点P到直线的距离的最大值为()A.2 B.C. D.10.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.11.等差数列中,,,则()A.6 B.7C.8 D.912.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支二、填空题:本题共4小题,每小题5分,共20分。13.展开式的常数项是________14.在单位正方体中,点E为AD的中点,过点B,E,的平面截该正方体所得的截面面积为______.15.已知数列的前4项依次为,,,,则的一个通项公式为________16.在空间直角坐标系中,向量为平面ABC的一个法向量,其中,,则向量的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知项数为的数列是各项均为非负实数的递增数列.若对任意的,(),与至少有一个是数列中的项,则称数列具有性质.(1)判断数列,,,是否具有性质,并说明理由;(2)设数列具有性质,求证:;(3)若数列具有性质,且不是等差数列,求项数的所有可能取值.18.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点19.(12分)在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.20.(12分)求下列不等式的解集:(1);(2).21.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和22.(10分)已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.2、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.3、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A4、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.5、A【解析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.6、C【解析】由函数的图象可知其单调性情况,再由导函数与原函数的关系即可得解.【详解】由函数的图象可知,当时,从左向右函数先增后减,故时,从左向右导函数先正后负,故排除AB;当时,从左向右函数先减后增,故时,从左向右导函数先负后正,故排除D.故选:C.7、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.8、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题9、C【解析】求出圆心到直线的距离,由这个距离加上半径即得【详解】由圆,可得圆心坐标,半径,则圆心C到直线的距离为,所以点P到直线l的距离的最大值为.故选:C10、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.11、C【解析】由等差数列的基本量法先求得公差,然后可得【详解】设数列的公差为,则,,所以故选:C12、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出的通项公式,令的指数为0,即可求解.【详解】的通项公式是,,依题意,令,所以的展开式中的常数项为.故答案为:.14、【解析】根据题意,取的中点,连接、、、,分析可得四边形为平行四边形,则要求的截面就是四边形,进而可得为菱形,连接、,求出、的长,计算可得答案【详解】根据题意,取的中点,连接、、、,易得,,则四边形为平行四边形,过点,,的截面就是,又由正方体为单位正方体,则,则为菱形,连接、,易得,,则,即要求截面的面积为,故答案为:15、(答案不唯一)【解析】观察数列前几项,找出规律即可写出通项公式.【详解】根据数列前几项,先不考虑正负,可知,再由奇数项为负,偶数项为正,可得到一个通项公式,故答案为:(不唯一)16、【解析】根据向量为平面ABC的一个法向量,由求解.【详解】因为,,所以,又因为向量为平面ABC的一个法向量,所以,解得,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)数列,,,不具有性质;(2)证明见解析;(3)可能取值只有.【解析】(1)由数列具有性质的定义,只需判断存在与都不是数列中的项即可.(2)由性质知:、,结合非负递增性有,再由时,必有,进而可得,,,,,应用累加法即可证结论.(3)讨论、、,结合性质、等差数列的性质判断是否存在符合题设性质,进而确定的可能取值.【小问1详解】数列,,,不具有性质.因为,,和均不是数列,,,中的项,所以数列,,,不具有性质.【小问2详解】记数列的各项组成的集合为,又,由数列具有性质,,所以,即,所以.设,因为,所以.又,则,,,,.将上面的式子相加得:.所以.【小问3详解】(i)当时,由(2)知,,,这与数列不是等差数列矛盾,不合题意.(ii)当时,存在数列,,,,符合题意,故可取.(iii)当时,由(2)知,.①当时,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②两式相减得:,这与数列不是等差数列矛盾,不合题意.综上,满足题设的的可能取值只有.【点睛】关键点点睛:第二问,由可知,并应用累加法求证结论;第三问,讨论k的取值,结合的性质,由性质、等差数列的性质判断不同k的取值情况下数列的存在性即可.18、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点19、(1);(2)直线与圆O相切,理由见解析.【解析】(1)法1:设外接圆为,由点在圆上,将其代入方程求参数,即可得圆的方程;法2:利用斜率的两点式易得,则是△外接圆的直径,进而求圆心坐标、半径,即可得圆的标准方程.(2)由题设有直线垂直于x轴,根据直线平行于直线及所过的点写出直线l的方程,求圆O的圆心与直线距离,并与半径比大小,即可确定它们的位置关系.【小问1详解】法1:设过三点的圆的方程为,则,解得,所求圆的方程为,即.法2:因,所以,则是△外接圆的直径,圆心,所以所求圆的方程为.【小问2详解】因为,则直线垂直于x轴,所以直线的方程为,由(1)知:圆心到直线的距离,所以直线与圆O相切.20、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.21、(1)(2)【解析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论