版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市华师大三附中2025届数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则点C到直线AB的距离为()A.3 B.C. D.2.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件3.椭圆的左、右焦点分别为,过焦点的倾斜角为直线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的离心率为()A. B.C. D.4.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.45.某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800M B.900MC.1025M D.1250M6.若数列满足,则数列的通项公式为()A. B.C. D.7.已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A. B.C.2 D.8.若不等式在上有解,则的最小值是()A.0 B.-2C. D.9.某公司要建造一个长方体状的无盖箱子,其容积为48m3,高为3m,如果箱底每1m2的造价为15元,箱壁每1m2造价为12元,则箱子的最低总造价为()A.72元 B.300元C.512元 D.816元10.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.411.设命题,,则为()A., B.,C., D.,12.已知,,则下列结论一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.14.用1,2,3,4排成的无重复数字的四位数中,其中1和2不能相邻的四位数的个数为___________(用数字作答).15.若函数的递增区间是,则实数______.16.已知、双曲线的左、右焦点,A、B为双曲线上关于原点对称的两点,且满足,,则双曲线的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项,前n项和为,且满足.(1)求证:数列是等比数列;(2)设,求数列的前n项和.18.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的解析式及单调递减区间;(2)若函数无零点,求的取值范围19.(12分)已知椭圆:的四个顶点组成的四边形的面积为,且经过点.(1)求椭圆的方程;(2)若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于,两点,与交于点,四边形和的面积分别为,,求的最大值.20.(12分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围21.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.22.(10分)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D2、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.3、C【解析】由题可得直线AB的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB的方程为,即,∴到直线AB距离,又三角形的内切圆的面积为,则半径为1,由等面积可得,.故选:C.4、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.5、C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C6、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D7、C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.8、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.9、D【解析】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,则f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低总造价【详解】设这个箱子的箱底的长为xm,则宽为m,设箱子总造价为f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,当且仅当x,即x=4时,f(x)取最小值816元故选:D10、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A11、B【解析】全称命题的否定时特称命题,把任意改为存在,把结论否定.【详解】命题,,则为“,”.故选:B12、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;14、【解析】利用插空法计算出正确答案.【详解】先排,形成个空位,然后将排入,所以符合题意的四位数的个数为.故答案为:15、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.16、【解析】可得四边形为矩形,运用三角函数的定义可得,,由双曲线的定义和矩形的性质,可得,由离心率公式求解即可.【详解】、为双曲线的左、右焦点,可得四边形为矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案为:.【点睛】关键点点睛:得出四边形为矩形,利用双曲线的定义解决焦点三角形问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)当时,由,得,两式相减化简可得,再对等式两边同时减去1,化简可证得结论,(2)由(1)得,然后利用分组求和可求出【小问1详解】由已知得,.当时,.两式相减得,.于是,即,又,,,所以满足上式,所以对都成立,故数列是等比数列.【小问2详解】由(1)得,,.18、(1)单调减区间为和;(2)的取值范围为:或【解析】(1)先求出函数的导数,求得切线的斜率,由两直线垂直的条件,可得,求得的解析式,可得导数,令导数小于0,可得减区间;(2)先求得,要使函数无零点,即要在内无解,亦即要在内无解.构造函数,对其求导,然后对进行分类讨论,运用单调性和函数零点存在性定理,即可得到的取值范围.【详解】(1),又由题意有:,故.此时,,由或,所以函数的单调减区间为和.(2),且定义域为,要函数无零点,即要在内无解,亦即要在内无解.构造函数.①当时,在内恒成立,所以函数在内单调递减,在内也单调递减.又,所以在内无零点,在内也无零点,故满足条件;②当时,⑴若,则函数在内单调递减,在内也单调递减,在内单调递增.又,所以在内无零点;易知,而,故在内有一个零点,所以不满足条件;⑵若,则函数在内单调递减,在内单调递增.又,所以时,恒成立,故无零点,满足条件;⑶若,则函数在内单调递减,在内单调递增,在内也单调递增.又,所以在及内均无零点.又易知,而,又易证当时,,所以函数在内有一零点,故不满足条件.综上可得:的取值范围为:或.【点睛】本题主要考查导数的几何意义、应用导数研究函数的零点问题、其中分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题,解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等19、(1)(2)【解析】(1)因为在椭圆上,所以,又因为椭圆四个顶点组成的四边形的面积为,所以,解得,所以椭圆的方程为(2)由(1)可知,设,则当时,,所以,直线的方程为,即,由得,则,,,又,所以,由,得,所以,所以,当,直线,,,,,所以当时,.点睛:在圆锥曲线中研究最值或范围问题时,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围.20、(1)答案见解析;(2).【解析】(1)对求导并求定义域,讨论、分别判断的符号,进而确定单调区间.(2)由题设,结合(1)所得的单调性,讨论、、分别确定在给定区间上的最小值,根据最小值小于零求参数a的范围.【小问1详解】由题设,且定义域为,当,即时,在上,即在上递增;当,即时,在上,在上,所以在上递减,在上递增;【小问2详解】由(1)知:若,即时,则在上递增,故,可得;若,即时,则在上递减,在上递增,故,不合题设;若,即时,则在上递减,故,得;综上,a的取值范围.21、(1)证明见解析;(2)证明见解析.【解析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版建筑材料购销合同书模板
- 二零二五年度台球室租赁及品牌形象合作合同3篇
- 2025购销合同常用文本
- 二零二五年度全新租赁房屋合同住宅押金退还管理协议3篇
- 2025年度全新出售房屋买卖贷款担保合同3篇
- 2025年度年度全新高空缆车运营意外事故免责服务协议3篇
- 二零二五年度智慧社区建设与运营管理协议合同范文2篇
- 2025年农村兄弟分家协议及遗产分配执行方案
- 2025年度养殖场劳务合同(养殖场安全生产监管)3篇
- 二零二五年度创业投资股权代持专项合同2篇
- 诊所污水污物粪便处理方案及周边环境
- 产品报价单(5篇)
- 指挥中心 施工方案
- 金融模拟交易实验报告
- 国家开放大学电大本科《古代小说戏曲专题》2023期末试题及答案(试卷号:1340)
- 加德纳多元智能理论教学课件
- 北师大版数学八年级上册全册教案
- 从业人员在安全生产方面的权利和义务
- 新开模具清单
- 抗菌药物临床应用指导原则(2023年版)
- 2023年军政知识综合题库
评论
0/150
提交评论