版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省普宁市华美实验学校数学高三上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B. C. D.2.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A. B. C. D.3.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线4.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.5.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是()A.0.2 B.0.5 C.0.4 D.0.86.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.7.已知函数,若,使得,则实数的取值范围是()A. B.C. D.8.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.59.设为虚数单位,为复数,若为实数,则()A. B. C. D.10.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()A.若,,则或B.若,,,则C.若,,,则D.若,,则11.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或912.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种 B.70种 C.75种 D.150种二、填空题:本题共4小题,每小题5分,共20分。13.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.14.设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则________15.已知点P是直线y=x+1上的动点,点Q是抛物线y=x2上的动点.设点M为线段PQ的中点,O为原点,则16.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4π,弧所在的圆的半径为6,则弧田的弦AB长是__________,弧田的面积是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.18.(12分)设都是正数,且,.求证:.19.(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.20.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.21.(12分)如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.22.(10分)如图,在四棱锥中,底面,,,,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先求出集合B,再与集合A求交集即可.【详解】由已知,,故,所以.故选:D.【点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.2、B【解析】
根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,,不满足判断条件;第次循环:,,不满足判断条件;第次循环:,,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.3、C【解析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.4、C【解析】
化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.5、B【解析】
利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型的计算,属于基础题.6、D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.7、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.8、C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模9、B【解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题10、D【解析】
根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,,,由线面平行的判定定理,有,故B正确;选项C:若,,,故,所成的二面角为,则,故C正确;选项D,若,,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.11、C【解析】
由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.12、C【解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C.【点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.14、【解析】
由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所以直线:,代入得,即,设,,故由定义有,,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。15、3【解析】
过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,当直线相切时距离最小,计算得到答案.【详解】如图所示:过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,y=x2,则y'=2x=1,x=1点M为线段PQ的中点,故M在直线y=x+38时距离最小,故故答案为:32【点睛】本题考查了抛物线中距离的最值问题,转化为切线问题是解题的关键.16、612π﹣9【解析】
过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积.【详解】∵如图,弧田的弧AB长为4π,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面积S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案为:6,12π﹣9.【点睛】本小题主要考查弓形弦长和弓形面积的计算,考查中国古代数学文化,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2),,.【解析】
(1)直接利用同角三角函数关系式的变换的应用求出结果.(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】(1)由题意得,,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.18、证明见解析【解析】
利用比较法进行证明:把代数式展开、作差、化简可得,,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以,∴成立,又都是正数,∴,①同理,∴.【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。19、(1),;(2).【解析】
(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出.【详解】(1)在中,由,得,由,得,所以,所以,,因为在中,,所以,因为(当且仅当时取等),所以长的最小值为;(2)在三角形中,因为为中线,所以,,所以,因为,所以,所以,由(1)知,所以,或,,所以,因为为角平分线,,,或2,所以,或,所以.【点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题.20、(1)的极坐标方程为;曲线的直角坐标方程.(2)【解析】
(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;解法2:设直线的极坐标方程为,分别代入曲线,的极坐标方程,得,,得出,即可基本不等式,即可求解.【详解】(1)由题曲线的参数方程为(为参数),消去参数,可得曲线的直角坐标方程为,即,则曲线的极坐标方程为,即,又因为曲线的极坐标方程为,即,根据,代入即可求解曲线的直角坐标方程.(2)解法1:设直线的倾斜角为,则直线的参数方程为(为参数,),把直线的参数方程代入曲线的普通坐标方程得:,解得,,,把直线的参数方程代入曲线的普通坐标方程得:,解得,,,,,即,,,,当且仅当,即时取等号,故的最小值为.解法2:设直线的极坐标方程为),代入曲线的极坐标方程,得,,把直线的参数方程代入曲线的极坐标方程得:,,即,,曲线的参,即,,,,当且仅当,即时取等号,故的最小值为.【点睛】本题主要考查了参数方程与普通方程,以及极坐标方程与直角坐标方程点互化,以及直线参数方程的应用和极坐标方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)见解析;(2)【解析】
(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【详解】(1)在中,,由余弦定理得,∴,∴,由题意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以为坐标原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx新型皮革加脂剂项目建议书
- 年产xxx修边机项目可行性研究报告(项目计划)
- 年产xxx星星花项目投资分析报告
- 职业生涯规划说课课件
- 小班社会公开课教案:爱护图书
- 小班数学教案《2的形成》
- 浅析地方政府专项债作项目资本金 20241113 -远东资信
- 白血病诊断路径
- 脚手架应急救援预案
- 急救知识竞赛题库
- 肌腱移位重建伸腕伸指功能ppt课件
- 植物光谱反射率曲线规律及影响因素
- IQC(来料)检测报告模板
- 光伏组件拆卸及转运方案(二)
- 沥青检测报告(共10页)
- 心血管疾病患者营养评估与饮食指导
- 家庭教育讲座(课堂PPT)
- 解一元一次方程复习课PPT精品文档
- 毕业设计(论文)基于PLC自动门控制系统的设计
- 各功能室管理表册
- 铸造用高纯生铁
评论
0/150
提交评论