版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市九校2025届数学高一上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则A. B.C. D.2.已知函数(其中)的最小正周期为,则()A. B.C.1 D.3.已知集合,则=A. B.C. D.4.已知,,,则的大小关系为()A. B.C. D.5.已知是定义在上的偶函数,且在上单调递减,若,,,则、、的大小关系为()A. B.C. D.6.已知函数,则函数的最小正周期为A. B.C. D.7.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.8.函数的最小正周期是()A. B.C. D.39.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______12.已知正实数x,y满足,则的最小值为______13.不等式的解集是________.14.已知,且,则__15.幂函数的图象过点,则___________.16.若函数在区间上是增函数,则实数取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.18.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.19.设是定义在上的奇函数,且当时,.(1)求当时,的解析式;(2)请问是否存在这样的正数,,当时,,且的值域为?若存在,求出,的值;若不存在,请说明理由.20.已知.(1)若是奇函数,求的值,并判断的单调性(不用证明);(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.21.已知对数函数f(x)=logax(a>0,且a≠1)的图象经过点(4,2)(1)求实数a的值;(2)如果f(x+1)<0,求实数x的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】故选2、D【解析】根据正弦型函数的最小正周期求ω,从而可求的值.【详解】由题可知,,∴.故选:D.3、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.4、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.5、D【解析】分析可知函数在上为增函数,比较、、的大小,结合函数的单调性与偶函数的性质可得出结论.【详解】因为偶函数在上为减函数,则该函数在上为增函数,,则,即,,,所以,,故,即.故选:D.6、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得7、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.8、A【解析】根据解析式,由正切函数的性质求最小正周期即可.【详解】由解析式及正切函数的性质,最小正周期.故选:A.9、A【解析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.10、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【点睛】本题考查方程根的个数,数形结合是解决问题的关键,属基础题12、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.13、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.14、【解析】利用二倍角公式可得,再由同角三角函数的基本关系即可求解.【详解】解:因为,整理可得,解得,或2(舍去),由于,可得,,所以,故答案为:15、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:16、【解析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据函数的单调性求出a的范围即可;(Ⅲ)根据二次函数的性质通过讨论m的范围,结合函数的最小值,求出m的值即可【详解】(I)函数的图象过点(II)由(I)知恒成立即恒成立令,则命题等价于而单调递增即(III),令当时,对称轴①当,即时,不符舍去.②当时,即时.符合题意.综上所述:【点睛】本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想以及分类讨论思想,换元思想,是一道中档题18、(1);(2)【解析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故19、(1)当时,(2),【解析】(1)根据函数的奇偶性,求解解析式即可;(2)根据题意,结合函数单调性,将问题转化为是方程的两个根的问题,进而解方程即可得答案.【详解】(1)当时,,于是.因为是定义在上的奇函数,所以,即.(2)假设存在正实数,当时,且的值域为,根据题意,,因为,则,得.又函数在上是减函数,所以,由此得到:是方程的两个根,解方程求得所以,存在正实数,当时,且的值域为20、(1)答案见解析;(2)【解析】(1)函数为奇函数,则,据此可得,且函数在上单调递增;(2)原问题等价于在区间(0,1)上有两个不同的根,换元令,结合二次函数的性质可得的取值范围是.试题解析:(1)因为是奇函数,所以,所以;在上是单调递增函数;(2)
在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根,所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y=a与函数的图象有2个交点时,所以的取值范围为.点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用21、(1)a=2.(2){x|﹣1<x<0}【解析】(1)将点(4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年尾矿库安全生产责任制范文(二篇)
- 2024年大学宣传部个人工作计划模版(二篇)
- 2024年幼儿园大班上学期计划例文(二篇)
- 2024年幼儿园六月份工作计划范本(六篇)
- 2024年员工年度工作计划模版(三篇)
- 2024年学生会部员量化考核制度(二篇)
- 2024年小学学校工作总结标准范本(二篇)
- 2024年少先队工作计划范本(五篇)
- 【《江苏红豆服装公司基层员工培训问题探究》9400字】
- 2024年土地买卖合同范文(二篇)
- 期中试卷(试题)2024-2025学年人教版数学五年级上册
- 10以内口算题每页50道
- 故障模式、影响及危害分析报告(模板)(共14页)
- 三无急诊病人的接诊与处理程序
- 冀教版八年级上册英语课件Lesson 22 I Like My Neighbourhood
- 乙二醇冷却器设计-赵守强
- 混凝土圆管涵计算书
- 一年级数学《整理房间》听课心得体会
- 学校迎接督导评估检查工作方案[推荐五篇]_1
- 多人共同借款协议书-
- 航空机务常用英语大全
评论
0/150
提交评论