陕西省西安市新城区西安中学2025届高一上数学期末联考试题含解析_第1页
陕西省西安市新城区西安中学2025届高一上数学期末联考试题含解析_第2页
陕西省西安市新城区西安中学2025届高一上数学期末联考试题含解析_第3页
陕西省西安市新城区西安中学2025届高一上数学期末联考试题含解析_第4页
陕西省西安市新城区西安中学2025届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市新城区西安中学2025届高一上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是()A. B.C. D.2.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.23.函数的图像可能是()A. B.C. D.4.下列四个集合中,是空集的是()A. B.C. D.5.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.6.已知函数,,若存在实数,使得,则的取值范围是()A. B.C. D.7.已知,,,则A. B.C. D.8.已知函数为奇函数,,若对任意、,恒成立,则的取值范围为()A. B.C. D.9.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.10.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数恰有2个零点,则实数m的取值范围是___________.12.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________13.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______14.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图,O为线段中点,C为上异于O的一点,以为直径作半圆,过点C作的垂线,交半圆于D,连结,过点C作的垂线,垂足为E.设,则图中线段,线段,线段_______;由该图形可以得出的大小关系为___________.15.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB相交(包含端点的情况),则实数m的取值范围是________________.16.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,圆(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值18.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值19.已知函数,(1)若,求函数的值域;(2)已知,且对任意的,不等式恒成立,求的取值范围20.已知函数f(x)=ln(ex+1)+ax是偶函数,g(x)=f(lnx)(e=2.71828…)(Ⅰ)求实数a的值;(Ⅱ)判断并证明函数g(x)在区间(0,1)上的单调性21.已知集合,(1)当时,求;(2)若,求a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A考点:斜二测画法点评:注意斜二测画法中线段长度的变化2、B【解析】根据题意可得、,结合三角形的面积公式计算即可.【详解】由题意知,,,所以.故选:B3、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.4、D【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.5、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.6、B【解析】根据给定条件求出函数的值域,由在此值域内解不等式即可作答.【详解】因函数的值域是,于是得函数的值域是,因存在实数,使得,则,因此,,解得,所以的取值范围是.故选:B7、A【解析】故选8、A【解析】由奇函数性质求得,求得函数的解析式,不等式等价于,由此求得答案.【详解】解:因为函数的定义域为,又为奇函数,∴,解得,∴,所以,要使对任意、,恒成立,只需,又,∴,即,故选:A.9、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B10、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形的面积为.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围.【详解】当时,恒有,此时无零点,则,∴要使上有2个零点,只需即可,故有2个零点有;当时,存在,此时有1个零点,则,∴要使上有1个零点,只需即可,故有2个零点有;综上,要使有2个零点,m的取值范围是.故答案为:.12、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.13、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.14、①.②.【解析】利用射影定理求得,结合图象判断出的大小关系.【详解】在中,由射影定理得,即.在中,由射影定理得,即根据图象可知,即.故答案为:;15、【解析】本道题目先绘图,然后结合图像判断该直线的位置,计算斜率,建立不等式,即可.【详解】要使得与线段AB相交,则该直线介于1与2之间,1号直线的斜率为,2号直线的斜率为,建立不等式关系转化为,所以或解得m范围为【点睛】本道题考查了直线与直线的位置关系,结合图像,判断直线的位置,即可.16、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或.(2)【解析】(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【详解】解:(1)由题意知圆心的坐标为,半径,当过点M的直线的斜率不存在时,方程为由圆心到直线的距离知,此时,直线与圆相切当过点M的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为故过点M的圆的切线方程为或(2)∵圆心到直线的距离为,∴,解得【点睛】本题主要考查了直线与圆相切与相交时的求解.注意直线过定点时分析斜率不存在与存在两种情况.直线与圆相切用圆心到直线的距离等于半径列式,直线与圆相交用垂径定理列式.属于中档题.18、(1);(2)【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴19、(1);(2)当时,;当且时,.【解析】(1)由题设,令则,即可求值域.(2)令,将问题转化为在上恒成立,再应用对勾函数的性质,讨论、,分别求出的取值范围【小问1详解】因为,设,则,因为,所以,即当时,,当或时,,所以的值域为.【小问2详解】因为,所以,又可化成,因为,所以,所以,令,则,,依题意,时,恒成立,设,,当时,当且仅当,,故;当,时,在上单调递增,当时,,故,综上所述:当时,;当且时,.【点睛】关键点点睛:应用换元法及参变分离,将问题转化为二次函数求值域,及由不等式恒成立、对勾函数的最值求参数范围.20、(I)a=(II)答案见解析【解析】(I)由函数f(x)=ln(ex+1)+ax偶函数,可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函数单调性的定义确定函数的单调性即可.【详解】(I)∵函数f(x)=ln(ex+1)+ax是偶函数,∴f(-x)=f(x),∴ln(e-x+1)-ax=ln(ex+1)+ax,化为:(2a-1)x=0,x∈R,解得a=经过验证满足条件∴a=(II)由(I)可得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论