版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德市第一中学2025届高二上数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是等差数列,为数列的前项和,,,则()A.54 B.71C.81 D.802.命题“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”3.已知函数的导数为,则等于()A.0 B.1C.2 D.44.已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为()A.1 B.C. D.5.已知,是双曲线的左,右焦点,经过点且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且A在第三象限,四边形为平行四边形,为直线的倾斜角,若,则该双曲线离心率的取值范围是()A. B.C. D.6.下列函数是偶函数且在上是减函数的是A. B.C. D.7.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.28.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.9.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.1610.已知椭圆的左右焦点分别为,直线与C相交于M,N两点(其中M在第一象限),若M,,N,四点共圆,且直线倾斜角不小于,则椭圆C的离心率e的取值范围是()A. B.C. D.11.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b12.已知等差数列的前n项和为,且,则()A.2 B.4C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.14.将由2,5,8,11,14,…组成的等差数列,按顺序写在练习本上,已知每行写13个,每页有21行,则5555在第______页第______行.(用数字作答)15.如图,某建筑物的高度,一架无人机上的仪器观测到建筑物顶部的仰角为,地面某处的俯角为,且,则此无人机距离地面的高度为________16.若等比数列满足,则的前n项和____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列满足(1)求的通项公式;(2)记的前n项和为,证明:,,成等差数列18.(12分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积19.(12分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.20.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.21.(12分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围22.(10分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等差数列的前n项和公式求解.【详解】∵是等差数列,,∴,得,∴.故选:C.2、C【解析】由全称命题的否定是特称命题即得.【详解】“任意”改为“存在”,否定结论即可.命题“,”的否定形式是“,”.故选:C.3、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A4、C【解析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.5、B【解析】根据双曲线的几何性质和平行四边形的性质可知也在双曲线的渐近线上,且在第一象限,从而由可知轴,所以在直角三角形中,,由,可得的范围,进而转化为,的不等式,结合可得离心率的取值范围【详解】解:因为经过点且与轴垂直的直线与双曲线的一条渐近线相交于点,且在第三象限,四边形为平行四边形,所以由双曲线的对称性可知也在双曲线的渐近线上,且在第一象限,由轴,可知轴,所以,在直角三角形中,,因为,所以,,即,所以,即,即,故,所以.故选:B6、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题7、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.8、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.9、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.10、B【解析】设椭圆的半焦距为c,由椭圆的中心对称性和圆的性质得以为直径的圆与椭圆C有公共点,则有以,再根据直线倾斜角不小于得,由椭圆的定义得,由此可求得椭圆离心率的范围.【详解】解:设椭圆的半焦距为c,由椭圆的中心对称性和M,,N,四点共圆得,四边形必为一个矩形,即以为直径的圆与椭圆C有公共点,所以,所以,所以,因为直线倾斜角不小于,所以直线倾斜角不小于,所以,化简得,,因为,所以,所以,,又,因为,所以,所以,所以,所以.故选:B.11、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.12、B【解析】根据等差数列前n项和公式,结合等差数列下标的性质、等差数列通项公式进行求解即可.【详解】设等差数列的公差为,,,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:14、①.7②.17【解析】首先求出等差数列的通项公式,即可得到为第项,再根据每行每页的项数计算可得;【详解】解:由2,5,8,11,14,…组成的等差数列的通项公式为,令,解得又,,.所以555在第7页第17行故答案为:;15、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【详解】根据题意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案为200【点睛】本题考查了解三角形的应用问题,考查正弦定理,三角形内角和问题,考查转化化归能力,是基础题16、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设等比数列的公比为,根据,求得的值,即可求得数列的通项公式;(2)由等比数列的求和公式求得,得到,,化简得到,即可求解【小问1详解】解:设等比数列的公比为,因为,所以,解得,所以,所以数列的通项公式【小问2详解】解:由(1)可得,,,所以,所以,即,,成等差数列18、(1);(2).【解析】(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.试题解析:(1)∵c•cosB+(b-2a)cosC=0,由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面积S=absinC=.19、(1);(2)证明见解析.【解析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①式.当时,直线,恒过定点,舍去;当时,直线,恒过定点.综上所述,直线过定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点,常利用直线的点斜式方程或截距式来证明.20、(1)证明见解析;(2)【解析】(1)根据题意可判断出ABCD是正方形,从而可得,再根据,由线面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可证出;(2)由、、两两垂直可建立空间直角坐标系,利用向量法即可求出直线PC与平面AED所成的角的正弦值.【小问1详解】因为PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小问2详解】由题可知、、两两垂直,建系如图,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,设平面的一个法向量为,则,,即,取,0,,所以直线与平面所成的角的正弦值为21、(1);(2)【解析】(1)根据关于的不等式的解集为,得到和1是方程的两个实数根,再利用韦达定理求解.(2)根据关于的不等式的解集为.又因为,利用判别式法求解.【详解】(1)因为关于的不等式的解集为,所以和1是方程的两个实数根,由韦达定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大客户渠道销售的工作职责描述(四篇)
- 怀旧店铺创业计划书(5篇)
- 2024年小学教师学期工作计划范文(三篇)
- 2024年幼儿园学期计划范文(五篇)
- 2024年工程质量目标管理制度范例(二篇)
- 2024年可燃及易燃易爆危险品管理制度范文(七篇)
- 2024年合租房单间卧室出租合同样本(二篇)
- 2024年明胶空心胶囊项目投资申请报告
- 2024年卷烟销货款管理制度(二篇)
- 2024年大巴车租赁合同例文(三篇)
- 附图3平面布置图和应急物资分布图
- 地下车库维修工程施工合同word模板
- 构建教研新常态实现教改新跨越
- 儿科及成人营养不良筛查表(STAMP)
- 论文综述写法ppt课件(PPT 45页)
- 中医急救护理的应用课件(PPT 93页)
- 广东发布新版《工程勘察设计收费导则》
- 香港联合交易所有限公司证券上市规则
- 语文记叙文阅读理解答题技巧ppt课件
- 水电站组成和生产过程
- 《神经系统脊髓》PPT课件.ppt
评论
0/150
提交评论