版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北正定弘文中学数学高一上期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列函数中,最小值为2的是()A.(且) B.C. D.2.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.C.2 D.43.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④4.已知函数在上是增函数,则的取值范围是()A. B.C. D.5.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=06.过点和,圆心在轴上的圆的方程为A. B.C D.7.命题:“,”的否定是()A., B.,C., D.,8.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.9.函数的部分图象如图所示,则可能是()A. B.C. D.10.函数f(x)=+的定义域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线关于点对称,则直线方程为______.12.经过点且在轴和轴上的截距相等的直线的方程为__________13.已知,则的最小值为___________14.已知,则______15.总体由编号为,,,,的个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第行的第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为__________16.已知直线:,直线:,若,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积18.如图,在中,已知为线段上的一点,.(1)若,求的值;(2)若,,,且与的夹角为时,求的值19.已知定义域为的函数是奇函数.(1)求的值;(2)判断并证明函数的单调性;(3)若对任意的不等式恒成立,求实数的取值范围.20.设全集为R,集合P={x|3<x≤13},非空集合Q={x|a+1≤x<2a-5},(1)若a=10,求P∩Q;;(2)若,求实数a的取值范围21.计算:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.2、D【解析】根据图象求得正确答案.【详解】由图象可知.故选:D3、D【解析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.4、C【解析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键5、C【解析】两圆公共弦的垂直平分线的方程即为两圆圆心所在直线的方程,求出两圆的圆心,从而可得答案.【详解】解:AB的垂直平分线的方程即为两圆圆心所在直线的方程,圆x2+y2-4x+6y=0的圆心为,圆x2+y2-6x=0的圆心为,则两圆圆心所在直线的方程为,即3x-y-9=0.故选:C.6、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.7、C【解析】根据含有一个量词的命题的否定形式,全称命题的否定是特称命题,可得答案.【详解】命题:“,”是全称命题,它的否定是特称命题:,,故选:C8、A【解析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.9、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,,得到正确答案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,,解得:,,当时,,故A正确,其他选项均不合要求.故选:A10、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可知,直线应与直线平行,可设直线方程为,由于两条至直线关于点对称,可通过计算点分别到两条直线的距离,通过距离相等,即可求解出,完成方程的求解.【详解】解:由题意可设直线的方程为,则,解得或舍去,故直线的方程为故答案为:.12、或【解析】根据题意将问题分直线过原点和不过原点两种情况求解,然后结合待定系数法可得到所求的直线方程【详解】(1)当直线过原点时,可设直线方程为,∵点在直线上,∴,∴直线方程为,即(2)当直线不过原点时,设直线方程,∵点在直线上,∴,∴,∴直线方程为,即综上可得所求直线方程为或故答案为或【点睛】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用13、【解析】根据基本不等式,结合代数式的恒等变形进行求解即可.【详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.14、【解析】根据,利用诱导公式转化为可求得结果.【详解】因为,所以.故答案为:.【点睛】本题考查了利用诱导公式求值,解题关键是拆角:,属于基础题.15、【解析】根据随机数表,依次进行选择即可得到结论.【详解】按照随机数表的读法所得样本编号依次为23,21,15,可知第3个个体的编号为15.故答案为:15.16、1【解析】根据两直线垂直时,系数间满足的关系列方程即可求解.【详解】由题意可得:,解得:故答案为:【点睛】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为18、(1);(2).【解析】(1)根据平面向量基本定理可得,整理可得结果;(2)根据平面向量基本定理可求得,,根据数量积的运算法则代入模长和夹角,整理可求得结果.【详解】(1)由得:,(2)由得:又,,且与的夹角为则【点睛】本题考查平面向量基本定理的应用、平面向量数量积的求解,关键是能将所求向量的数量积通过平面向量基本定理转化为已知模长和夹角的向量的数量积运算.19、(1),;(2)为定义在上的减函数,证明见解析;(3).【解析】(1)由可求得;根据奇函数定义知,由此构造方程求得;(2)将函数整理为,设,可证得,由此可得结论;(3)根据单调性和奇偶性可将不等式化为,结合的范围可求得,由此可得结果.【小问1详解】是定义在上的奇函数,且,,解得:,,,解得:;当,时,,,满足为奇函数;综上所述:,;【小问2详解】由(1)得:;设,则,,,,,是定义在上的减函数;【小问3详解】由得:,又为上的奇函数,,,由(2)知:是定义在上的减函数,,即,当时,,,即实数的取值范围为.20、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大型水利工程采砂厂承包权转让合同范本3篇
- 二零二五版国际贸易合同主体欺诈责任划分与损害赔偿合同3篇
- 2025年度鲜羊奶品牌授权及区域代理销售合同范本3篇
- 2025年度出租车行业驾驶员权益保护合作协议3篇
- 2024版加油站柴油订货与销售协议范例版B版
- 专业水泥销售协议:2024版细则版A版
- 二零二五年度高压电缆敷设与维护保养合同大全3篇
- 2024版吉阳区环卫设施安全检查评估合同
- 2024技术岗位聘用合同范本
- 二零二五年度特色猪种养殖基地猪栏承包协议3篇
- 危险性较大分部分项工程及施工现场易发生重大事故的部位、环节的预防监控措施
- 继电保护试题库(含参考答案)
- 《榜样9》观后感心得体会四
- 2023事业单位笔试《公共基础知识》备考题库(含答案)
- 《水下抛石基床振动夯实及整平施工规程》
- 2025年云南大理州工业投资(集团)限公司招聘31人管理单位笔试遴选500模拟题附带答案详解
- 风电危险源辨识及控制措施
- 《教师职业道德与政策法规》课程教学大纲
- 儿童传染病预防课件
- 护理组长年底述职报告
- 《住院患者身体约束的护理》团体标准解读课件
评论
0/150
提交评论