版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省皖北协作区高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义焦点相同,且离心率互为倒数的椭圆和双曲线为一对相关曲线.已知,是一对相关曲线的焦点,Р是这对相关曲线在第一象限的交点,则点Р与以为直径的圆的位置关系是()A.在圆外 B.在圆上C.在圆内 D.不确定2.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=13.直线的倾斜角是A. B.C. D.4.甲、乙两名射击运动员进行比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则两人各射击一次恰有一人中靶的概率为()A.0.26 B.0.28C.0.72 D.0.985.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.6.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.2207.如图,在三棱锥S-ABC中,E,F分别为SA,BC的中点,点G在EF上,且满足,若,,,则()A. B.C. D.8.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.9.抛物线的焦点到准线的距离为()A. B.C. D.110.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.11.某班新学期开学统计新冠疫苗接种情况,已知该班有学生45人,其中未完成疫苗接种的有5人,则该班同学的疫苗接种完成率为()A. B.C. D.12.有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.为和的等差中项,则_____________.14.若把英语单词“”的字母顺序写错了,则可能出现的错误有______种15.记为等差数列的前n项和.若,则__________16.已知椭圆的左、右焦点分别为,若椭圆上的点P满足轴,,则该椭圆的离心率为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1是直角梯形,以为折痕将折起,使点C到达的位置,且平面与平面垂直,如图2(1)求异面直线与所成角的余弦值;(2)在棱上是否存在点P,使平面与平面的夹角为?若存在,则求三棱锥的体积,若不存在,则说明理由18.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围19.(12分)如图,在四棱锥P-ABCD中,平面ABCD,,,,,.(1)证明:平面平面PAC;(2)求平面PCD与平面PAB夹角的余弦值.20.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.21.(12分)已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.22.(10分)解下列不等式:(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设椭圆的长轴长为,椭圆的焦距为,双曲线的实轴长为,根据题意可得,设,根据椭圆与双曲线的定义将分别用表示,设,再根据两点的距离公式将点的坐标用表示,从而可判断出点与圆的位置关系.【详解】解:设椭圆的长轴长为,椭圆的焦距为,双曲线的实轴长为,设椭圆和双曲线的离心率分别为,则,所以,以为直径的圆的方程为,设,则有,所以,设,,所以①,②,则①②得,所以,所以,将代入②得,所以,,则点到圆心的距离为,所以点Р在以为直径的圆外.故选:A.2、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题3、D【解析】由方程得到斜率,然后可得其倾斜角.【详解】因为直线的斜率为所以其倾斜角为故选:D4、A【解析】依据独立事件同时发生的概率即可求得甲乙两人各射击一次恰有一人中靶的概率.【详解】记甲中靶为事件A,乙中靶为事件B,则甲乙两人各射击一次恰有一人中靶,包含甲中乙不中和甲不中乙中两种情况,则甲乙两人各射击一次恰有一人中靶的概率为故选:A5、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.6、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.7、B【解析】利用空间向量基本定理结合已知条件求解【详解】因为,所以,因为E,F分别为SA,BC的中点,所以,故选:B8、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题9、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.10、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C11、D【解析】利用古典概型的概率求解.【详解】该班同学的疫苗接种完成率为故选:D12、B【解析】先分为在甲箱中抽出一张有奖票放入乙箱和在甲箱中抽出一张无奖票放入乙箱,进而结合条件概率求概率的方法求得答案.【详解】记表示在甲箱中抽出一张有奖票放进乙箱,表示在甲箱中抽出一张无奖票放进乙箱,A表示最后抽到有奖票.所以,,于是.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等差中项的定义可求得结果.【详解】由等差中项的定义可得.故答案为:.14、23【解析】先计算该单词所有字母能够组成的所有排列情况,然后减去正确的,即是可能出现错误的情况.【详解】因为“”四个字母组成的全排列共有(种)结果,其中只有排列“”是正确的,其余全是错误的,故可能出现错误的共有(种).故答案为:23.15、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.16、【解析】由题意分析为直角三角形,得到关于a、c的齐次式,即可求出离心率.【详解】设,则.由椭圆的定义可知:,所以.所以因轴,所以为直角三角形,由勾股定理得:,即,即,所以离心率.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,靠近点D的三等分点.【解析】(1)由题意建立空间直接坐标系,求得的坐标,由求解;(2)假设棱上存在点P,设,求得点p坐标,再求得平面PBE的一个法向量,由平面,得到为平面的一个法向量,然后由求解.【小问1详解】解:因为,所以四边形ABCE是平行四边形,又,所以四边形ABCE是菱形,,又平面与平面垂直,又平面与平面=EB,所以平面,建立如图所示空间直接坐标系:则,所以,则,所以异面直线与所成角的余弦值是;【小问2详解】假设棱上存在点P,使平面与平面的夹角为,设,则,又,设平面PBE的一个法向量为,则,即,则,由平面,则为平面的一个法向量,所以,解得.18、(1);(2)或.【解析】(1)求出圆心到直线的距离,再由垂径定理求弦长;(2)由圆心到直线的距离大于半径列式求解的范围【详解】解:(1)圆,圆心为,半径,圆心到直线的距离为,弦长(2)若直线与圆无公共点,则圆心到直线的距离大于半径解得或19、(1)证明见解析(2)【解析】(1)过点C作于点H,由平面几何知识证明,然后由线面垂直的性质得线线垂直,从而得线面垂直,然后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角【小问1详解】在梯形ABCD中,过点C作于点H.由,,,,可知,,,.所以,即,①因为平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小问2详解】因为AB,AD,AP两两垂直,所以以A为原点,以AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.设平面PCD的法向量为,则,取,则,,则.平面PAB的一个法向量为,所以,所以平面PCD与平面PAB所成的锐二面角的余弦值为.20、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.21、(1)(2)【解析】(1)求出函数的导函数,由在时有极值0,则,两式联立可求常数a,b的值,从而得解析式;(2)利用导数研究函数的单调性、极值,根据函数图象的大致形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学期教研工作计划例文(三篇)
- 【《基于Android的图书管理系统设计与实现》8100字(论文)】
- 数学新学期的计划(15篇)
- 幼儿防溺水自我承诺书(5篇)
- 2024年因病缺课登记制度样本(二篇)
- 2024年图书馆工作职责工作职模版(二篇)
- 2024年室内设计师个人计划(二篇)
- 2024年学校德育处工作计划范文(三篇)
- 2024年医院科室年度工作计划范本(三篇)
- 2024年幼儿园大班班级安全工作计划范本(二篇)
- 中考作文考前辅导:意高文自胜
- 公司收购声明与承诺函
- 历年北京市中小学生天文观测竞赛_天文知识_小学组
- 语文论文浅谈如何在语文教学中培养学生情感
- 危险化学品安全使用许可适用行业目录(2013年版)3
- 湿法脱硫工艺计算书
- 轿车子午线轮胎用帘线品种及其性能
- 天然气室外立管吊装专项施工方案(完整版)
- 浅谈博物馆布展设计的内容与形式
- 在音乐教学中培养学生的人文素养
- 4各部门定期识别适用的安全法律法规、标准规范和其他要求清单
评论
0/150
提交评论