版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省营口市2025届高二数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.2.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.3.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.4.已知随机变量X服从二项分布X~B(4,),()A. B.C. D.5.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形6.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有7.已知向量是两两垂直的单位向量,且,则()A.5 B.1C.-1 D.78.已知直线和互相垂直,则实数的值为()A. B.C.或 D.9.若方程表示圆,则实数的取值范围为()A. B.C. D.10.设,,若,其中是自然对数底,则()A. B.C. D.11.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.12.命题“,”的否定为()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.若函数在x=1处的切线与直线y=kx平行,则实数k=___________.14.与直线和直线的距离相等的直线方程为______15.已知抛物线的焦点坐标为,则该抛物线上一点到焦点的距离的取值范围是___________.16.牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足.(1)求数列的通项公式;(2)设,数列的前项和为,证明:当时,.18.(12分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.19.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C方程20.(12分)已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.21.(12分)为了调查某苹果园中苹果的生长情况,在苹果园中随机采摘了个苹果.经整理分析后发现,苹果的重量(单位:)近似服从正态分布,如图所示,已知,.(1)若从苹果园中随机采摘个苹果,求该苹果的重量在内的概率;(2)从这个苹果中随机挑出个,这个苹果的重量情况如下.重量范围(单位:)个数为进一步了解苹果的甜度,从这个苹果中随机选出个,记随机选出的个苹果中重量在内的个数为,求随机变量的分布列和数学期望.22.(10分)已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D2、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.3、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C4、D【解析】利用二项分布概率计算公式,计算出正确选项.【详解】∵随机变量X服从二项分布X~B(4,),∴.故选:D.5、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.6、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C7、B【解析】根据单位向量的定义和向量的乘法运算计算即可.【详解】因为向量是两两垂直的单位向量,且所以.故选:B8、B【解析】由两直线垂直可得出关于实数的等式,求解即可.【详解】由已知可得,解得.故选:B.9、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.10、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.11、D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D12、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由题可求函数的导数,再利用导数的几何意义即求.【详解】∵,∴,,又函数在x=1处的切线与直线y=kx平行,∴.故答案为:2.14、【解析】设直线方程为,根据两平行直线之间距离公式即可求解.【详解】设该直线为:,则由两平行直线之间距离公式得:,故该直线为:;故答案为:.15、【解析】根据题意,求得,得到焦点坐标,结合抛物线的定义,得到,根据,求得,即可求解.【详解】由抛物线的焦点坐标为,可得,解得,设抛物线上的任意一点为,焦点为,由抛物线的定义可得,因为,所以,所以抛物线上一点到焦点的距离的取值范围是.故答案为:.16、##【解析】利用导数的几何意义根据r的2次近似值的定义求解即可【详解】由,得,取,,所以过点作曲线的切线的斜率为1,所以直线的方程为,其与轴交点的横坐标为1,即,因为,所以过点作曲线的切线的斜率为4,所以直线的方程为,其与轴交点的横坐标为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)利用前n项和与的关系即求;(2)由题知,然后利用裂项相消法即证.【小问1详解】由,可得,两式相减可得,当时,,满足,所以.【小问2详解】∵,因为,所以当时,.18、(1)x2=2y;(2)证明见解析【解析】(1)利用抛物线的定义进行求解即可;(2)设直线l的直线方程与抛物线方程联立,根据一元二次方程根与系数关系、斜率公式进行证明即可.【小问1详解】∵点N(t,1)在抛物线C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴抛物线C的方程为x2=2y;【小问2详解】依题意,设直线l:y=kx+1,A(x1,y1),B(x2,y2),联立,得x2﹣2kx﹣2=0.则x1x2=﹣2,∴.故k1k2为定值.【点睛】关键点睛:利用抛物线的定义是解题的关键.19、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l的斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1720、(1)(2)【解析】(1)根据椭圆的离心率为,及经过点建立等式可求解;(2)分斜率存在与不存在两种情况进行讨论,当斜率存在时,计算与后再求范围即可.【小问1详解】由题意知的离心率为,整理得,又因为经过点,所以,解得,所以,因此,的方程为.小问2详解】由已知可得,当直线AB或DE有一条的斜率不存在时,可得,或,,此时有或.当AB和DE的斜率都存在时且不为0时,设直线:,直线:,,,,由得,所以,,所以,用替换可得.所以,综上所述,的取值范围为.21、(1);(2)分布列答案见解析,数学期望为.【解析】(1)利用正态密度曲线的对称性结合已知条件可求得的值;(2)分析可知,随机变量的所有可能取值为、、,计算出随机变量在不同取值下的概率,可得出随机变量的分布列,进一步可求得的值.【小问1详解】解:已知苹果的重量(单位:)近似服从正态分布,由正态分布的对称性可知,,所以从苹果园中随机采摘个苹果,该苹果的重量在内的概率为.【小问2详解】解:由题意可知,随机变量的所有可能取值为、、,,;,所以,随机变量的分布列为:所以22、(1)(2)或【解析】(1)设曲线上的任意一点,由题意可得,化简即可得出(2)分直线的斜率不存在与存在两种情况讨论,当斜率不存在时,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学期教研工作计划例文(三篇)
- 【《基于Android的图书管理系统设计与实现》8100字(论文)】
- 数学新学期的计划(15篇)
- 幼儿防溺水自我承诺书(5篇)
- 2024年因病缺课登记制度样本(二篇)
- 2024年图书馆工作职责工作职模版(二篇)
- 2024年室内设计师个人计划(二篇)
- 2024年学校德育处工作计划范文(三篇)
- 2024年医院科室年度工作计划范本(三篇)
- 2024年幼儿园大班班级安全工作计划范本(二篇)
- 中考作文考前辅导:意高文自胜
- 公司收购声明与承诺函
- 历年北京市中小学生天文观测竞赛_天文知识_小学组
- 语文论文浅谈如何在语文教学中培养学生情感
- 危险化学品安全使用许可适用行业目录(2013年版)3
- 湿法脱硫工艺计算书
- 轿车子午线轮胎用帘线品种及其性能
- 天然气室外立管吊装专项施工方案(完整版)
- 浅谈博物馆布展设计的内容与形式
- 在音乐教学中培养学生的人文素养
- 4各部门定期识别适用的安全法律法规、标准规范和其他要求清单
评论
0/150
提交评论