版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳二中2025届高二上数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是函数的一个极值点,则的极大值为()A. B.C. D.2.数列2,,9,,的一个通项公式可以是()A. B.C. D.3.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.4.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.5.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.6.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.567.过点与直线平行的直线的方程是()A. B.C. D.8.下列数列中成等差数列的是()A. B.C. D.9.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.810.抛物线的焦点坐标A. B.C. D.11.在如图所示的棱长为1的正方体中,点P在侧面所在的平面上运动,则下列四个命题中真命题的个数是()①若点P总满足,则动点P的轨迹是一条直线②若点P到点A的距离为,则动点P的轨迹是一个周长为的圆③若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆④若点P到平面的距离与到直线CD的距离相等,则动点P的轨迹是抛物线A.1 B.2C.3 D.412.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,,则______14.点在以,为焦点的椭圆上运动,则的重心的轨迹方程是___________.15.过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为___________.16.抛物线的准线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值18.(12分)如图,在三棱锥中,侧面为等边三角形,,,平面平面,为的中点.(1)求证:;(2)若,求二面角的大小.19.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.20.(12分)已知向量,(1)求;(2)求;(3)若(),求的值21.(12分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.22.(10分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考物理的情况,随机选取了100名高一学生,将他们某次物理测试成绩(满分100分)按照,,,,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计这100名学生本次物理测试成绩的中位数.(2)根据调查,本次物理测试成绩不低于60分的学生,高考将选考物理科目;成绩低于60分的学生,高考将不选考物理科目.按分层抽样的方法从测试成绩在,的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考物理科目的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D2、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C3、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C4、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.5、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D6、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B7、A【解析】根据题意利用点斜式写出直线方程即可.【详解】解:过点的直线与直线平行,,即.故选:A.8、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C9、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.10、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B11、C【解析】根据线面关系、距离关系可分别对每一个命题判断.【详解】若点P总满足,又,,,可得对角面,因此点P的轨迹是直线,故①正确若点P到点A的距离为,则动点P的轨迹是以点B为圆心,以1为半径的圆(在平面内),因此圆的周长为,故②正确点P到直线AB的距离PB与到点C的距离PC之和为1,又,则动点P的轨迹是线段BC,因此③不正确点P到平面的距离(即到直线的距离)与到直线CD的距离(即到点C的距离)相等,则动点P的轨迹是以线段BC的中点为顶点,直线BC为对称轴的抛物线(在平面内),因此④正确故有①②④三个故选:C12、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】由已知及等差数列通项公式、前n项和公式,列方程求基本量即可.【详解】若公差为,则,可得.故答案为:.14、【解析】设出点和三角形的重心,利用重心坐标公式得到点和三角形的重心坐标的关系,,代入椭圆方程即可求得轨迹方程,再利用,,三点不共线得到.【详解】设,,由,得,即,,因为为的重心,所以,,即,,代入,得,即,因为,,三点不共线,所以,则的重心的轨迹方程是.故答案:.15、【解析】设,,,,分别代入双曲线方程,两式相减,化简可得:,结合中点坐标公式求得直线的斜率,再利用点斜式即可求直线方程【详解】过点的直线与该双曲线交于,两点,设,,,,,两式相减可得:,因为为的中点,,,,则,所以直线的方程为,即为故答案为:【点睛】方法点睛:对于有关弦中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.16、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)根据给定条件求出椭圆半焦距c,长短半轴长a,b即可得解.(2)设出直线的方程,再与椭圆C的方程联立,求出弦AB长及点P到直线的距离,然后求出面积的表达式并求其最大值即得.【小问1详解】设椭圆的标准方程为,依题意,半焦距,,即,所以椭圆的标准方程为.【小问2详解】依题意,设直线,,由消去y并整理得:,由,解得,则有,,于是得,而点到直线的距离为,因此,的面积,当且仅当,即时取“=”,所以面积最大值为1.【点睛】结论点睛:直线l:y=kx+b上两点间的距离;直线l:x=my+t上两点间的距离.18、(1)证明见解析(2)【解析】(1)取中点,由面面垂直和线面垂直性质可证得,结合,由线面垂直判定可证得平面,由线面垂直性质可得结论;(2)以为坐标原点可建立空间直角坐标系,由向量数乘运算可求得点坐标,利用二面角的向量求法可求得结果.【小问1详解】取中点,连接,为等边三角形,为中点,,平面平面,平面平面,平面,平面,又平面,;分别为中点,,又,,平面,,平面,又平面,.【小问2详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,则,,,,,设,则,,由得:,解得:,即,,设平面的法向量,则,令,解得:,,;又平面的一个法向量,;由图象知:二面角为锐二面角,二面角的大小为.19、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的焦点,即求;(2)设直线l的方程为,联立抛物线方程,利用韦达定理法可得,即得.【小问1详解】由椭圆,可得,故,∴抛物线C的方程为.【小问2详解】由题可设直线l的方程为,由,得,设,则,又,故,∴,∴,即,故原点在以线段AB为直径的圆上.20、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.21、(1),分布列见解析;(2).【解析】(1)根据二项分布知识即可求解;(2)将补种棕榈树的概率转化为成活的概率,结合概率加法公式即可求解.【小问1详解】由题意知,,又,所以,故未成活率为,由于所有可能的取值为0,1,2,3,4,所以,,,,,则的分布列为01234【小问2详解】记“需要补种棕榈树”为事件A,由(1)得,,所以需要补种棕榈树的概率为.22、(1),中位数为;(2).【解析】(1)由频率和为1求参数a,根据直方图及中位数性质求中位数即可.(2)首先由分层抽样原则求选取的5人在、的人数分布情况,再应用列举法求古
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度农业科技企业股权分红及转让协议3篇
- 2024音乐素材版权质押合同:视频素材制作融资
- 2025年度新能源汽车共享平台车辆挂靠管理合同3篇
- 2025年度智慧城市基础设施建设项目施工合同范本3篇
- 2025年度渔船租赁与渔业产业链整合服务合同3篇
- 2024铁路员工劳动协议样本一
- 2025年中国汽轮机行业市场供需格局及投资规划建议报告
- 2025年度个人汽车租赁合同绿色出行附加服务4篇
- 2025年度智能机器人研发与技术服务合作协议书4篇
- 2025年陕西西安人才市场有限公司招聘笔试参考题库含答案解析
- 第1本书出体旅程journeys out of the body精教版2003版
- 台资企业A股上市相关资料
- 电 梯 工 程 预 算 书
- 罗盘超高清图
- 参会嘉宾签到表
- 机械车间员工绩效考核表
- 2.48低危胸痛患者后继治疗评估流程图
- 人力资源管理之绩效考核 一、什么是绩效 所谓绩效简单的讲就是对
- 山东省医院目录
- 云南地方本科高校部分基础研究
- 废品管理流程图
评论
0/150
提交评论