版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省余姚市2025届数学高二上期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A.2 B.C. D.2.函数的极大值点为()A. B.C. D.不存在3.若函数的图象如图所示,则函数的导函数的图象可能是()A. B.C D.4.已知函数,则的值为()A. B.C. D.5.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.6.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.6747.函数在区间上的最小值是()A. B.C. D.8.已知双曲线的左右焦点分别是和,点关于渐近线的对称点恰好落在圆上,则双曲线的离心率为()A. B.2C. D.39.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A. B.2C. D.10.已知数列为等比数列,,则的值为()A. B.C. D.211.△ABC两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.12.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过椭圆上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.14.已知三个数2,,6成等比数列,则实数______15.如图所示,奥林匹克标志由五个互扣的环圈组成,五环象征五大洲的团结.若从该奥林匹克标志的五个环圈中任取2个,则这2个环圈恰好相交的概率为___________.16.若,满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知首项为1的等比数列,满足(1)求数列的通项公式;(2)求数列的前n项和18.(12分)某校从高三年级学生中随机抽取名学生的某次数学考试成绩,将其成绩分成,,,,的组,制成如图所示的频率分布直方图.(1)求图中的值;(2)估计这组数据的平均数;(3)若成绩在内的学生中男生占.现从成绩在内的学生中随机抽取人进行分析,求人中恰有名女生的概率.19.(12分)如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,且正四棱锥的体积为.(1)该正四棱锥的表面积的大小;(2)二面角的大小.(结果用反三角表示)20.(12分)在平面直角坐标系中,圆外的点在轴的右侧运动,且到圆上的点的最小距离等于它到轴的距离,记的轨迹为(1)求的方程;(2)过点的直线交于,两点,以为直径的圆与平行于轴的直线相切于点,线段交于点,证明:是的中点21.(12分)某地从今年8月份开始启动12-14岁人群新冠肺炎疫苗的接种工作,共有8千人需要接种疫苗.前4周的累计接种人数统计如下表:前x周1234累计接种人数y(千人)2.5344.5(1)求y关于的线性回归方程;(2)根据(1)中所求的回归方程,预计该地第几周才能完成疫苗接种工作?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,22.(10分)在平面直角坐标系xOy中,O为坐标原点,已知直线:mx-(2-m)y-4=0与直线h:x+y-2=0的交点M在第一三象限的角平分线上.(1)求实数m的值;(2)若点P在直线l上且,求点P的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,得出到渐近线的距离为,由此可得的关系,从而求得离心率【详解】因为,而,所以是等边三角形,到直线的距离为,又,渐近线方程取,即,所以,化简得故选:B2、B【解析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B3、C【解析】由函数的图象可知其单调性情况,再由导函数与原函数的关系即可得解.【详解】由函数的图象可知,当时,从左向右函数先增后减,故时,从左向右导函数先正后负,故排除AB;当时,从左向右函数先减后增,故时,从左向右导函数先负后正,故排除D.故选:C.4、C【解析】利用导数公式及运算法则求得,再求解【详解】因为,所以,所以故选:C5、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.6、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D7、B【解析】求出导函数,确定函数的单调性,得极值,并求出端点处函数值比较后可得最小值【详解】解:因为,于是函数在上单调递增,在上单调递减,,,得函数在区间上的最小值是故选:B8、B【解析】首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac的齐次式,即可求出双曲线的离心率【详解】由题意可设,则到渐近线的距离为.设关于渐近线的对称点为M,F1M与渐近线交于A,∴MF1=2b,A为F1M的中点.又O是F1P的中点,∴OA∥F2M,∴为直角,所以△为直角三角形,由勾股定理得:,所以,所以,所以离心率故选:B.9、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.10、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B11、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.12、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】相关点法求解轨迹方程.【详解】设,则,则,即,因为,代入可得,即的轨迹方程为.故答案为:14、【解析】由题意可得,从而可求出的值【详解】因为三个数2,,6成等比数列,所以,解得故答案为:15、【解析】利用古典概型求概率.【详解】从该奥林匹克标志的五个环圈中任取2个,共有10种情况,其中这2个环圈恰好相交的情况有4种,则所求的概率.故答案为:.16、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据已知条件求得数列的公比,由此求得.(2)利用错位相减求和法求得.【小问1详解】设等比数列的公比为,由,可得.故数列是以1为首项,3为公比的等比数列,所以【小问2详解】由(1)得,,①,②①②,得所以18、(1)(2)77(3)【解析】(1)根据给定条件结合频率分布直方图中各小矩形面积和为1的特点列式计算即得.(2)利用频率分布直方图求平均数的方法直接列式计算即得.(3)求出成绩在内的学生及男女生人数,再用列举法即可求出概率.【小问1详解】由频率分布直方图得,解得,所以图中值是0.020.【小问2详解】由频率分布直方图得这组数据的平均数:,所以这组数据的平均数为77.【小问3详解】数学成绩在内的人数为(人),其中男生人数为(人),则女生人数为人,记名男生分别为,,名女生分别为,,,从数学成绩在内的人中随机抽取人进行分析的基本事件为:,共个不同结果,它们等可能,其中人中恰有名女生的基本事件为,共种结果,所以人中恰有名女生的概率为为.19、(1)(2)【解析】(1)首先求出球的半径,即可得到四棱锥的棱长,再根据锥体的表面积公式计算可得;(2)取中点,联结,即可得到,从而得到为二面角的平面角,再利用余弦定理计算可得.【小问1详解】解:设球的半径为,则解得,所以所有棱长均为,因此【小问2详解】解:取中点,联结,因为均为正三角形,因此,即为二面角的平面角.,因此二面角的大小为.20、(1)(2)证明见解析【解析】(1)设点,求得到圆上的最小距离为,根据题意得到,整理即可求得曲线的方程;(2)当直线的斜率不存在时,显然成立;当直线的斜率存在时,设直线的方程,联立方程组求得和,得到,结合抛物线的定义和方程求得,,结合,即可求解.【小问1详解】解:设点,(其中),由圆,可得圆心坐标为,因为在圆外,所以到圆上的点的最小距离为,又由到圆上的点的最小距离等于它到轴的距离,可得,即,整理得,即曲线的方程为【小问2详解】解:当直线的斜率不存在时,可得点为抛物线的交点,点为坐标原点,点为抛物线的准线与轴的交点,显然满足是的中点;当直线的斜率存在时,设直线的方程,设,,,则,联立方程组,整理得,因为,且,则,故,由抛物线的定义知,设,可得,所以,又因为,所以,解得,所以,因为在地物线上,所以,即,所以,即是的中点21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国方形双眼超薄炉行业投资前景及策略咨询研究报告
- 2009年中国醋酸行业市场研究与竞争力分析报告
- 2024至2030年中国室外大型金属构件雷电防护装置行业投资前景及策略咨询研究报告
- 2024年中国钽铌氧化物市场调查研究报告
- 2024年中国草藤编壁纸市场调查研究报告
- 2024年中国粉体回收滤芯市场调查研究报告
- 2024年中国溶剂回收系统市场调查研究报告
- 2024年中国核苷酸二钠市场调查研究报告
- 2024年中国彩色铝环市场调查研究报告
- 2024年中国双螺杆挤出机减速箱市场调查研究报告
- 2023-2024学年北京北师大实验中学初二(上)期中物理试卷(含答案)
- 医疗风险管理检查记录表(修)
- 江西省景德镇市2023-2024学年七年级上学期期中数学试卷
- 湖南省娄底市涟源市2023-2024学年上学期期中质量检测九年级英语试卷
- 运动技能学习与控制课件第十一章运动技能的练习
- 国家开放大学《可编程控制器应用实训》形考任务5(实训五)参考答案
- 印刷品服务投标方案(技术标)(宣传印刷品、业务资料等)
- 商业活动港风复古摩登年会主题方案
- 《APQP培训资料教程》课件
- 吊装作业票(样本)
- 快递员国家职业技能标准2019年版
评论
0/150
提交评论