版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省博文中学2025届高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.12.设斜率为2的直线l过抛物线()的焦点F,且和y轴交于点A,若(O为坐标原点)的面积为4,则抛物线方程为()A. B.C. D.3.在等比数列中,,,则等于()A. B.5C. D.94.已知,,若,则实数的值为()A. B.C. D.25.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.某口罩生产商为了检验产品质量,从总体编号为001,002,003,…,499,500的500盒口罩中,利用下面的随机数表选取10个样本进行抽检,选取方法是从下面的随机数表第1行第5列的数字开始由左向右读取,则选出的第3个样本的编号为()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3257.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式解集是A. B.C. D.8.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.9.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.10.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,11.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线12.已知双曲线的离心率为,左焦点为F,实轴右端点为A,虚轴上端点为B,则为()A.直角三角形 B.钝角三角形C.等腰三角形 D.锐角三角形二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集是________14.用秦九韶算法求函数,当时的值时,___________15.若随机变量,则______.16.某单位现有三个部门竞岗,甲、乙、丙三人每人只竞选一个部门,设事件A为“三人竞岗部门都不同”,B为“甲独自竞岗一个部门”,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围19.(12分)设命题p:,命题q:关于x的方程无实根.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围20.(12分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.21.(12分)(1)证明:;(2)已知:,,且,求证:.22.(10分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C2、B【解析】根据抛物线的方程写出焦点坐标,求出直线的方程、点的坐标,最后根据三角形面积公式进行求解即可.【详解】抛物线的焦点的坐标为,所以直线的方程为:,令,解得,因此点的坐标为:,因为面积为4,所以有,即,,因此抛物线的方程为.故选:B.3、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D4、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.5、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.6、A【解析】按随机数表法逐个读取数字即可得到答案.【详解】根据随机数表法读取的数字分别为:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故选出的第3个样本的编号为148.故选:A.7、B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集8、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.9、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.10、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:11、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B12、A【解析】根据三边的关系即可求出【详解】因,所以,而,,,所以,即,所以为直角三角形故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先将分式不等式化为一元二次不等式,再根据一元二次不等式的解法解不等式即可【详解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集为{x|-4<x<2}故答案为.【点睛】本题主要考查分式不等式及一元二次不等式的解法,比较基础14、0【解析】利用秦九韶算法的定义计算即可.【详解】故答案为:015、2【解析】根据给定条件利用二项分布的期望公式直接计算作答.【详解】因为随机变量,所以.故答案:216、##0.5【解析】根据给定条件求出事件B和AB的概率,再利用条件概率公式计算作答.【详解】依题意,,,所以.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解.【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.18、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.19、(1)(2)【解析】(1)解一元二次不等式,即可求得当为真命题时的取值范围;(2)先求得命题为真命题时的取值范围.由为假命题,为真命题可知,两命题一真一假.分类讨论,即可求得的取值范围.【详解】(1)当为真命题时,解不等式可得;(2)当为真命题时,由,可得,∵为假命题,为真命题,∴,两命题一真一假,∴或,解得或,∴m的取值范围是.【点睛】本题考查了根据命题真假求参数的取值范围,由复合命题真假判断命题真假,并求参数的取值范围,属于基础题.20、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据存在性和任意性的定义,结合导数的性质、(1)的结论、构造函数法分类讨论进行求解即可.【小问1详解】,,①当时,恒成立,在上单调递增.②当时,恒成立,在上单调递减,③当吋,,在单调递减,单调递增.综上所述,当吋,在上单调递增;当时,在上单调递减,当时,在单调递减,单调递增.【小问2详解】由题意可知:在单调递减,单调递增由(1)可知:①当时,在单调递增,则恒成立②当时,在单调递减,则应(舍)③当时,,则应有令,则,且在单调递增,单调递减,又恒成立,则无解综上,.【点睛】关键点睛:运用构造函数法,结合存在性、任意性的定义进行求解是解题的关键.21、(1)证明见解析;(2)证明见解析.【解析】(1)利用分析法证明即可;(2)将与相乘,展开后利用基本不等式可证明所证不等式成立.【详解】(1)要证成立,即证,即证,即证,而显然成立,故成立;(2)已知,,且,则,当且仅当时,等号成立,故.22、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学学校教学工作计划范本(三篇)
- 2024年安全生产检查制度样本(五篇)
- 2024年室内装修施工合同范文(二篇)
- 2024年小河煤矿水害隐患排查治理制度范文(四篇)
- 2024年市场助理的职责说明(二篇)
- 2024年幼儿园保教部门工作计划范文(二篇)
- 【《债券市场违约对审计师的影响探究的国内外文献综述》4700字】
- 2024年学校考勤制度例文(五篇)
- 2024年小学生学习计划范例(四篇)
- 2024年小班幼师个人工作计划范本(二篇)
- 教育集团教师培养方案
- 一例登革热合并凝血功能障碍患者的个案护理20190-7
- 小儿重症肺炎课件
- 啤酒终端销售培训课件
- 门诊病历书写模板全
- 汽车维修公司章程模板
- 环保、安全、消防、职业卫生专项验收的内容
- 二年级乘除法口算题大全500题(可直接打印)
- 六年级英语Unit1-How--can--I--get-there教材分析
- 起重吊装作业PPT课件
- 新旧生活对比图片.PPT
评论
0/150
提交评论