吉林省吉林市蛟河市朝鲜族中学2025届高二上数学期末考试模拟试题含解析_第1页
吉林省吉林市蛟河市朝鲜族中学2025届高二上数学期末考试模拟试题含解析_第2页
吉林省吉林市蛟河市朝鲜族中学2025届高二上数学期末考试模拟试题含解析_第3页
吉林省吉林市蛟河市朝鲜族中学2025届高二上数学期末考试模拟试题含解析_第4页
吉林省吉林市蛟河市朝鲜族中学2025届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市蛟河市朝鲜族中学2025届高二上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是A. B.C. D.2.设平面向量,,其中m,,记“”为事件A,则事件A发生的概率为()A. B.C. D.3.2021年11月,郑州二七罢工纪念塔入选全国职工爱国主义教育基地名单.某数学建模小组为测量塔的高度,获得了以下数据:甲同学在二七广场A地测得纪念塔顶D的仰角为45°,乙同学在二七广场B地测得纪念塔顶D的仰角为30°,塔底为C,(A,B,C在同一水平面上,平面ABC),测得,,则纪念塔的高CD为()A.40m B.63mC.m D.m4.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.5.如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()A. B.C. D.6.下列对动直线的四种表述不正确的是()A.与曲线C:可能相离,相切,相交B.恒过定点C.时,直线斜率是0D.时,直线的倾斜角是135°7.设函数在上可导,则等于()A. B.C. D.以上都不对8.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.40429.已知函数在上可导,且,则与的大小关系为A. B.C. D.不确定10.命题若,且,则,命题在中,若,则.下列命题中为真命题的是()A. B.C. D.11.如图,在三棱柱中,为的中点,若,,,则下列向量与相等的是()A. B.C. D.12.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的焦距为______.14.过点,的直线方程(一般式)为___________.15.直线的倾斜角为_______________.16.不大于100的正整数中,被3除余1的所有数的和是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆的离心率为,设为坐标原点,为椭圆的左顶点,动直线过线段的中点,且与椭圆相交于、两点.已知当直线的倾斜角为时,(1)求椭圆的标准方程;(2)是否存在定直线,使得直线、分别与相交于、两点,且点总在以线段为直径的圆上,若存在,求出所有满足条件的直线的方程;若不存在,请说明理由18.(12分)设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围19.(12分)求下列不等式的解集:(1);(2).20.(12分)已知E,F分别是正方体的棱BC和CD的中点(1)求与所成角的大小;(2)求与平面所成角的余弦值21.(12分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).22.(10分)已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,(Ⅰ)求该椭圆的标准方程:(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,,命题为真,根据复合命题的真假关系,即可得出结论.【详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,,方程表示椭圆命题是真命题,则是真命题.故选:B.【点睛】本题考查复合命题真假的判断,属于基础题.2、D【解析】由向量的数量积公式结合古典概型概率公式得出事件A发生的概率.【详解】由题意可知,即,因为所有的基本事件共有种,其中满足的为,,只有1种,所以事件A发生的概率为.故选:D3、B【解析】设,先表示出,再利用余弦定理即可求解.【详解】如图所示,,设塔高为,因为平面ABC,所以,所以,又,即,解得.故选:B.4、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力5、C【解析】分别取的中点,连接,利用棱柱的定义证明几何体是三棱柱,再证明平面PQR,得到三棱柱是直三棱柱求解.【详解】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C6、A【解析】根据过定点的直线系求出恒过点可判断B,由点与圆的位置关系可判断A,由直线方程可判断CD.【详解】直线可化为,令,,解得,,所以直线恒过定点,而该定点在圆C:内部,所以必与该圆相交当时,直线方程为,故斜率为0,当时,直线方程为,故斜率为,倾斜角为135°.故选:A7、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C8、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.9、B【解析】由,所以.10、A【解析】根据不等式性质及对数函数的单调性判断命题的真假,根据大角对大边及正弦定理可判断命题的真假,再根据复合命题真假的判断方法即可得出结论.【详解】解:若,且,则,当时,,所以,当时,,所以,综上命题为假命题,则为真命题,在中,若,则,由正弦定理得,所以命题为真命题,为假命题,所以为真命题,,,为假命题.故选:A.11、A【解析】利用空间向量基本定理求解即可【详解】由于M是的中点,所以故选:A12、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由求出即可.【详解】可化为,设焦距为,则,则焦距故答案为:14、【解析】利用两点式方程可求直线方程.【详解】∵直线过点,,∴,∴,化简得.故答案为:.15、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.16、1717【解析】利用等差数列的前项和公式可求所有数的和.【详解】100以内的正整数中,被3除余1由小到大构成等差数列,其首项为1,公差为3,共有项,它们的和为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,且直线的方程为或【解析】(1)分析可知,,直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,利用弦长公式可求得的值,即可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆的方程联立,列出韦达定理,求出点、,由已知得出,求出的值,即可得出结论.【小问1详解】解:因为,则,,所以,椭圆的方程为,即,易知点,则点,当直线的倾斜角为时,直线的方程为,设点、,联立,可得,,由韦达定理可得,,所以,,解得,则,,因此,椭圆的标准方程为.【小问2详解】解:易知点,若直线与轴重合,则、为椭圆长轴的两个端点,不合乎题意.设直线的方程为,设点、,联立,可得,,由韦达定理可得,,直线的斜率为,直线的方程为,故点,同理可得点,,,由题意可得,解得或.因此,存在满足题设条件的直线,且直线的方程为或,点总在以线段为直径的圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.18、(1)充要条件;(2).【解析】(1)根据解一元二次不等式的方法,结合充分性、必要性的定义进行求解判断即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】因为,所以,解得或,显然p是q的充要条件;【小问2详解】,当时,该不等式的解集为全体实数集,显然由,但不成立,因此p是q的充分不必要条件,不符合题意;当时,该不等式的解集为:,显然当时,不一定成立,因此p不是q的必要不充分条件,当时,该不等式解集为:,要想p是q的必要不充分条件,只需,而,所以,因此a的取值范围为:.19、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.20、(1)60°;(2).【解析】(1)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出异面直线所成角的余弦值,进而结合异面直线成角的范围即可求出结果;(2)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出求出线面角的正弦值,进而结合线面角的范围即可求出结果;【小问1详解】以AB,AD,所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,设正方体的棱长为,则,,,,所以,,设与EF所成角的大小为,则,因为异面直线成角的范围是,所以与所成角的大小为60°【小问2详解】设平面的法向量为,与平面所成角为,因为,,所以,,所以,令,得为平面的一个法向量,又因为,所以,所以21、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同的零点,不符合题意.当时,.令,得.当时,;当时,.所以在上单调递增,在上单调递减.而当时,,时,.所以要使存在两个不同的零点,则,即,解得.因为存在两个不同的零点,则,即.不妨设,则,则,要证,即证,即证,即,.即证,令,则,所以在上单调递增,所以,即,所以成立.综上有.【关键点点睛】解决本题的第(1)问的关键是对导函数的分子因式分解;解决第(2)问的关键一是分步证明,二是研究函数的单调性,三是转化思想的运用,四是换元思想的运用.22、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题意可以求出椭圆的焦点,再根据椭圆的离心率公式,求出的值,然后结合椭圆的关系求出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论