版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省上蔡县第二高级中学高一数学第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点的个数为A. B.C. D.2.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.43.如图,在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,则下列结论错误的是()A.与平面ABC所成的角为 B.平面C.与所成角为 D.4.以下四组数中大小比较正确的是()A. B.C. D.5.令,,,则三个数、、的大小顺序是()A. B.C. D.6.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②8.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④9.已知函数,则的零点所在区间为A. B.C. D.10.四个变量y1,y2,y3,y4,随变量x变化的数据如下表:x124681012y116295581107133159y21982735656759055531447y3186421651210001728y42.0003.7105.4196.4197.1297.6798.129其中关于x近似呈指数增长的变量是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.12.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________13.在平面四边形中,,若,则__________.14.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________15.用表示a,b中的较小者,则的最大值是____.16.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值18.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求方程在区间内的所有实数根之和.19.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.20.给出以下四个式子:①;②;③;④.(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个,求出这个常数;(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.21.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】略【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为12、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.3、A【解析】在A中,∠C1AC是AC1与平面ABC所成的角,从而AC1与平面ABC所成的角为45°;在B中,连结OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1与BB1所成的角,从而AC1与BB1所成的角为45°;在D中,连结OD,则OD∥AC1【详解】由在直三棱柱ABC-A1B1C1中,AC=CC1,点D,O分别是AB,BC1的中点,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1与平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1与平面ABC所成的角为45°,故A错误;在B中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故B正确;在C中,∵CC1∥BB1,∴∠AC1C是AC1与BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1与BB1所成的角为45°,故C正确;在D中,连结OD,∵点D,O分别是AB,BC1的中点,∴OD∥AC1,∵OD⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1,故D正确故选A【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题4、C【解析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【点睛】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题5、D【解析】由已知得,,,判断可得选项.【详解】解:由指数函数和对数函数的图象可知:,,,所以,故选:D【点睛】本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于中档题.6、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.8、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D9、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题10、B【解析】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,【详解】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,符合指数函数的增长特点.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.12、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]13、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.14、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.15、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.16、【解析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【点睛】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【点睛】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力18、(1)(2)【解析】(1)由图像得,并求解出周期为,从而得,再代入最大值,利用整体法,从而求解得,可得解析式为;(2)作出函数与的图像,可得两个函数在有四个交点,从而得有四个实数根,再利用三角函数的对称性计算得实数根之和.【小问1详解】由图可知,,∴∴,又点在的图象上∴,∴,,,∵,∴,∴.【小问2详解】由图得在上的图象与直线有4个交点,则方程在上有4个实数根,设这4个实数根分别为,,,,且,由,得所以可知,关于直线对称,∴,关于直线对称,∴,∴【点睛】求三角函数的解析式时,由即可求出;确定时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标,则令或,即可求出,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出和,若对,的符号或对的范围有要求,则可用诱导公式变换使其符合要求.19、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间最大值求得参数的题目,主要考查了两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作融资合同范本
- 2024年上海住宅消防工程合同范本
- 2024年银行借款抵押合同范本
- 2024年电焊承包合同协议书
- 2024年过桥垫资借款合同
- 2024年无偿汽车租赁协议合同范本
- 2024年模型定作合同范本
- 2024年体育馆场地租赁合同
- 2024年载重货车租用合同书
- 第三讲 第一课时《共和国的坚实根基》(教学设计)-《习近平新时代中国特色社会主义思想学生读本(小学高年级)》
- 消防安全宣传培训制度(5篇)
- 冲压工艺培训学习资料(非常全面)课件
- 电信服务礼仪课件
- 牛皮癣清理办法
- 传承·创新·引领:共同体推动语文课堂教学改革探索
- 六年级上册科学第二单元知识总结(精简版)
- 我的家乡安徽课件
- 波浪的基本知识课件
- 小学生劳动教育评价细则
- 装饰工程项目总承包管理措施完整版
- 行政综合管理岗位竞聘报告PPT模板
评论
0/150
提交评论