




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市胶州市2025届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中最小值为6的是()A. B.C D.2.已知幂函数的图像过点,若,则实数的值为A. B.C. D.3.已知直线的方程为,则该直线的倾斜角为A. B.C. D.4.如图,以为直径在正方形内部作半圆,为半圆上与不重合的一动点,下面关于的说法正确的是A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值5.已知集合A={1,2,3,4},B={x∈R|0<x-1<3},则A∩B=()A. B.{2,3}C.{1,2,3} D.{2,3,4}6.下列每组函数是同一函数的是()A. B.C. D.7.已知函数,若,则恒成立时的范围是()A. B.C. D.8.将函数的图象先向右平移个单位长度,再向下平移1个单位长度,所得图象对应的函数解析式是()A. B.C. D.9.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面10.若函数的图象(部分)如图所示,则的解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则上的最小值是_________.12.已知a,b,c是空间中的三条直线,α是空间中的一个平面①若a⊥c,b⊥c,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥α,b⊥α,则a⊥b;④若a∥b,a∥α,则b∥α;说法正确的序号是______13.已知函数是定义在上且以3为周期的奇函数,当时,,则时,__________,函数在区间上的零点个数为__________14.已知向量,若,则实数的值为______15.函数的定义域是________.16.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.(1)求图中a值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.18.已知命题p:,q:,若p是q的必要不充分条件,求a的取值范围19.函数的部分图象如图所示.(1)求、及图中的值;(2)设,求函数在区间上的最大值和最小值20.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值21.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用基本不等式逐项分析即得.【详解】对于A,当时,,故A错误;对于B,因为,所以,当且仅当,即时取等号,故B正确;对于C,因为,所以,当且仅当,即,等号不能成立,故C错误;对于D,当时,,故D错误.故选:B.2、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.3、B【解析】直线的斜率,其倾斜角为.考点:直线的倾斜角.4、D【解析】设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故选D.点睛:本题考查了向量的加法及向量模的计算,利用建系的方法,引入三角函数来解决使得思路清晰,计算简便,遇见正方形,圆,等边三角形,直角三角形等特殊图形常用建系的方法.5、B【解析】求解一元一次不等式化简,再由交集运算得答案【详解】解:,2,3,,,,2,3,,故选:6、C【解析】依次判断每组函数的定义域和对应法则是否相同,可得选项.【详解】A.的定义域为,的定义城为,定义域不同,故A错误;B.的定义域为,的定义域为,定义域不同,故B错误;C.与的定义域都为,,对应法则相同,故C正确;D.的定义域为,的定义域为,定义域不同,故D错误;故选:C【点睛】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.7、B【解析】利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得解.【详解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案为B【点睛】本题主要考查函数的奇偶性和单调性,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.8、A【解析】利用三角函数的伸缩平移变换规律求解变换后的解析式,再根据二倍角公式化简.【详解】将函数的图象先向右平移个单位长度,得函数解析式为,再将函数向下平移1个单位长度,得函数解析式为.故选:A9、D【解析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【点睛】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:
线面垂直的判定定理,直线与平面内的两条相交直线垂直;
面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;
线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;
面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面10、A【解析】根据正弦型函数最小正周期公式,结合代入法进行求解即可.【详解】设函数的最小正周期为,因为,所以由图象可知:,即,又因为函数过,所以有,因为,所以令,得,即,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值【详解】解:因为,且,,当且仅当时,即,时等号成立;故答案为:12、③【解析】根据空间线面位置关系的定义,性质判断或举反例说明【详解】对于①,若a,b为平面α的直线,c⊥α,则a⊥c,b⊥c,但a∥b不一定成立,故①错误;对于②,若a∥α,b∥α,则a,b的关系不确定,故②错误;对于③,不妨设a在α上的射影为a′,则a′⊂α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正确;对于④,若b⊂α,显然结论不成立,故④错误.故答案为③【点睛】本题考查了空间线面位置关系的判断,属于中档题,13、①.②.5【解析】(1)当时,,∴,又函数是奇函数,∴故当时,(2)当时,令,得,即,解得,即,又函数为奇函数,故可得,且∵函数是以3为周期的函数,∴,,又,∴综上可得函数在区间上的零点为,共5个答案:,514、;【解析】由题意得15、【解析】利用已知条件可得出关于的不等式组,由此可解得函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案:.16、(答案不唯一)【解析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)众数为,平均数为(3)【解析】(1)由频率分布直方图的性质,列出方程,即可求解;可得,(2)根据频率分布直方图的中众数的概念和平均数的计算公式,即可求解;(3)因为50到80的频率和为0.65,50到90的频率和为0.9,结合百分数的计算方法,即可求解.【小问1详解】解:由频率分布直方图的性质,可得,解得.【小问2详解】解:根据频率分布直方图的中众数的概念,可得众数为,平均数为.【小问3详解】解:因为50到80的频率和为0.65,50到90的频率和为0.9,所以75%分位数为.18、(-∞,3]【解析】求解不等式,令A={x|};令B={x|};由题可知BA,根据集合的包含关系求解即可.【详解】,令A={x|-2≤x≤10};令B=,p是q的必要不充分条件,∴BA,①B=时,1-a>1+a,即a<0;②B≠时,且1-a=-2和1+a=10不同时成立,解得0≤a≤3;综上,a≤3﹒19、(1),,;(2),.【解析】(1)由可得出,结合可求得的值,由结合可求得的值,可得出函数的解析式,再由以及可求得的值;(2)利用三角恒等变换思想化简函数的解析式为,由可求得的取值范围,结合正弦函数的基本性质可求得函数在区间上的最大值和最小值.【详解】(1)由题图得,,,,又,,得,,又,得,.又,且,,,得,综上所述:,,;(2),,,所以当时,;当时,【点睛】本题考查利用图象求正弦型函数解析式中的参数,同时也考查了正弦型函数在区间上最值的计算,考查计算能力,属于中等题.20、(1)(2)-【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸浆筛选与净化设备的运行与维护考核试卷
- 海洋油气开采中的海洋生物多样性保护考核试卷
- 纸板容器生命周期分析考核试卷
- 终端设备在水下通信技术考核试卷
- 林业与地方特色农产品的区域品牌营销考核试卷
- 纤维素纤维在声学材料中的应用考核试卷
- 种子种苗在气候变化适应中的作用考核试卷
- 玻璃纤维增强型塑料水处理设备的制备考核试卷
- 畜禽智能养殖环境监测与调控系统考核试卷
- 南京旅游职业学院《交通运输工程前沿讲座》2023-2024学年第二学期期末试卷
- 智能音箱行业发展趋势与市场前景深度解析
- 2024年榆林能源集团有限公司招聘工作人员笔试真题
- 山东省潍坊市高密市2024-2025学年七年级下学期4月期中数学试题(原卷版+解析版)
- 防汛抗旱合同协议
- 2025年气瓶充装作业人员P证理论考试练习试题(400题)附答案
- 征地补偿的合同范本
- 2025年新高考历史预测模拟试卷3(含答案)
- 船舶压载水和沉积物接收处理技术要求编制说明
- 区域总经销商合同范本
- 保洁员安全知识培训课件
- 第十课+养成遵纪守法好习惯【中职专用】中职思想政治《职业道德与法治》高效课堂(高教版2023·基础模块)
评论
0/150
提交评论