2025届安徽舒城桃溪中学高二数学第一学期期末复习检测试题含解析_第1页
2025届安徽舒城桃溪中学高二数学第一学期期末复习检测试题含解析_第2页
2025届安徽舒城桃溪中学高二数学第一学期期末复习检测试题含解析_第3页
2025届安徽舒城桃溪中学高二数学第一学期期末复习检测试题含解析_第4页
2025届安徽舒城桃溪中学高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽舒城桃溪中学高二数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.2.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.123.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.44.在下列函数中,最小值为2的是()A. B.C. D.5.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟6.如图,在空间四边形OABC中,,,,点N为BC的中点,点M在线段OA上,且OM=2MA,则()A. B.C. D.7.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.8.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()A. B.C. D.10.已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知椭圆:的左、右焦点分别为,,点P是椭圆上的动点,,,则的最小值为()A. B.C D.12.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,若,,则异面直线与所成角的大小为______.14.已知数列{an}的前n项和Sn=n2+n,则an=_____15.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件16.若向量满足,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,,参考数据:,)18.(12分)椭圆C:的左右焦点分别为,,P为椭圆C上一点.(1)当P为椭圆C的上顶点时,求的余弦值;(2)直线与椭圆C交于A,B,若,求k19.(12分)某校高三年级进行了一次数学测试,全年级学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若(1)求a,b的值;(2)若成绩落在区间内的人数为36人,请估计该校高三学生的人数20.(12分)已知数列与满足(1)若,且,求数列的通项公式;(2)设的第k项是数列的最小项,即恒成立.求证:的第k项是数列的最小项;(3)设.若存在最大值M与最小值m,且,试求实数的取值范围21.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标22.(10分)设p:关于x的不等式有解,q:.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D2、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C3、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.4、C【解析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,时,为负数,A错误.对于B选项,,,,但不存在使成立,所以B错误.对于C选项,,当且仅当时等号成立,C正确.对于D选项,,,,但不存在使成立,所以D错误.故选:C5、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.6、D【解析】利用空间向量的线性运算即可求解.【详解】解:∵N为BC的中点,点M在线段OA上,且OM=2MA,且,,,故选:D.7、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.8、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.9、C【解析】分别取的中点,连接,利用棱柱的定义证明几何体是三棱柱,再证明平面PQR,得到三棱柱是直三棱柱求解.【详解】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C10、B【解析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.11、A【解析】由椭圆的定义可得;利用基本不等式,若,则,当且仅当时取等号.【详解】根据椭圆的定义可知,,即,因为,,所以,当且仅当,时等号成立.故选:A12、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画出长方体,再将异面直线与利用平行线转移到一个三角形内求解角度即可.【详解】画出长方体可得异面直线与所成角为与之间的夹角,连接.则因为,则,又,故,又,故为等腰直角三角形,故,即异面直线与所成角的大小为故答案为【点睛】本题主要考查立体几何中异面直线的角度问题,一般的处理方法是将异面直线经过平行线的转换构成三角形求角度,属于基础题型.14、2n【解析】根据数列的通项与前n项和的关系求解即可.【详解】由题,当时,,当时.当时也满足.故.故答案为:【点睛】本题主要考查了根据数列的通项与前n项和的关系求通项公式的方法,属于基础题.15、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.16、【解析】根据题目条件,利用模的平方可以得出答案【详解】∵∴∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)回归直线方程是理想的【解析】(1)根据表格数据求得,利用最小二乘法可求得回归直线方程;(2)令回归直线中的可求得估计数据,对比检验数据即可确定结论.小问1详解】由表格数据可知:,,,则,关于的回归直线方程为;【小问2详解】令回归直线中的,则,,(1)中所得到的回归直线方程是理想的.18、(1)(2)【解析】(1)利用余弦定理可求顶角的余弦值.(2)联立直线方程和椭圆方程,消元后利用韦达定理结合弦长公式可求的值.【小问1详解】当为椭圆的上顶点时,,在中,由余弦定理知.【小问2详解】设,,将直线与椭圆:联立得:,因为直线过焦点,故恒成立,又,由弦长公式得,化简整理得:,解得.19、(1)(2)人【解析】(1)由频率分布直方图的性质求得,结合,即可求得的值;(2)由频率分布直方图求得落在区间内的概率,进而求得该校高三年级的人数【小问1详解】解:由频率分布直方图的性质,可得:,可得,又由,可得解得;【小问2详解】解:由频率分布直方图可得,成绩落在区间内的概率为,则该校高三年级的人数为(人)20、(1)(2)证明见解析.(3)【解析】(1)由已知关系得出是等差数列及公差,然后可得通项公式;(2)由已知关系式,利用累加法证明对任意的,恒成立,即可得(3)由累加法求得通项公式,然后确定的奇数项和偶数项的单调性,得出数列的最大项和最小项,再利用已知范围解得的范围【小问1详解】由已知,是等差数列,公差为6,所以;【小问2详解】对任意的,恒成立,而恒成立,若,则,恒成立,同理若,也有恒成立,所以对任意的,恒成立,即是最小项;【小问3详解】时,,所以,也适合此式所以,若,则,,,即,,若,由于,且是正负相间,因此无最大项也无最小项因此有,所以的奇数项数列是递增数列,且,,的偶数项数列是递减数列,且,,所以的最大值是,最小项是,,由,又,所以21、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论