哈尔滨市重点中学2025届高二上数学期末监测试题含解析_第1页
哈尔滨市重点中学2025届高二上数学期末监测试题含解析_第2页
哈尔滨市重点中学2025届高二上数学期末监测试题含解析_第3页
哈尔滨市重点中学2025届高二上数学期末监测试题含解析_第4页
哈尔滨市重点中学2025届高二上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

哈尔滨市重点中学2025届高二上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.2.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.3.现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6 B.7C.9 D.154.命题的否定是()A. B.C. D.5.若等比数列中,,,那么()A.20 B.18C.16 D.146.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.7.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.20228.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.9.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.10.()A. B.C. D.11.若,则下列正确的是()A. B.C. D.12.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角二、填空题:本题共4小题,每小题5分,共20分。13.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________14.过点作圆的切线,则切线方程为______.15.直线过点,且原点到直线l的距离为,则直线方程是______16.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.18.(12分)已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.19.(12分)已知函数.(1)讨论的单调性;(2)当a=1时,对于任意的,,都有恒成立,则m的取值范围.20.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.21.(12分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求22.(10分)已知椭圆C:()过点,且离心率为(1)求椭圆C的方程;(2)过点()的直线l(不与x轴重合)与椭圆C交于A,B两点,点C与点B关于x轴对称,直线AC与x轴交于点Q,试问是否为定值?若是,请求出该定值,若不是,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A2、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C3、D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D4、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C5、B【解析】利用等比数列的基本量进行计算即可【详解】设等比数列的公比为,则,所以故选:B6、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.7、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.8、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.9、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D10、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.11、D【解析】根据不等式性质并结合反例,即可判断命题真假.【详解】对于选项A:若,则,由题意,,不妨令,,则此时,这与结论矛盾,故A错误;对于选项B:当时,若,则,故B错误;对于选项C:由,不妨令,,则此时,故C错误;对于选项D:由不等式性质,可知D正确.故选:D.12、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用代入法进行求解即可.【详解】故答案为:14、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.15、【解析】直线斜率不存在不满足题意,即设直线的点斜式方程,再利用点到直线的距离公式,求出的值,即可求出直线方程.【详解】①当直线斜率不存在时,显然不满足题意.②当直线斜率存在时,设直线为.原点到直线l的距离为,即直线方程为.故答案为:.16、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)建立如图所示的空间直角坐标系,用空间向量法求线面角;(2)用空间向量法求二面角【小问1详解】以D为坐标原点,射线方向为x,y,z轴正方向建立空间直角坐标系.当时,,所以,设平面的法向量为,所以,即不妨得,,又,所以,则【小问2详解】在长方体中,因为平面,所以平面平面,因为平面与平面交于,因为四边形为正方形,所以,所以平面,即为平面的一个法向量,,所以,又平面的法向量为,所以.18、(1)(2)或【解析】(1)根据焦距求出,利用面积最大值,得到求出,从而得到,求出椭圆方程;(2)分直线斜率存在和斜率不存在,结合题干条件得到,进而求出直线方程.【小问1详解】∵∴,又的面积最大值,则,所以,从而,,故椭圆的方程为:;【小问2详解】①当直线的斜率存在时,设,代入③整理得,设、,则,所以,点到直线的距离因为,即,又由,得,所以,.而,,即,解得:,此时;②当直线的斜率不存在时,,直线交椭圆于点、.也有,经检验,上述直线均满足,综上:直线的方程为或.【点睛】圆锥曲线中,有关向量的题目,要结合条件选择不同的方法,一般思路有转化为三角形面积,或者线段的比,或者由向量得到共线等.19、(1)答案见解析;(2).【解析】(1)由题可得,利用导数与单调性关系分类讨论即得;(2)由题可得,利用函数的单调性及极值求函数最值即得.【小问1详解】由题可得的定义域为,若,恒有,当时,,当时,,∴在上单调递增,在上单调递减,若,令,得,若,恒有在上单调递增,若,当时,;当时,,故在和上单调递增,在上单调递减,若,当时,;当时,,故在和上单调递增,在上单调递减;综上所述,当,在上单调递增,在上单调递减,当,在和上单调递增,在上单调递减,当,在上单调递增,当,在和上单调递增,在上单调递减;【小问2详解】由(1)知,时,在和上单调递增,在上单调递减;当a=1时,,,,∴.又,,∴.由题意得,,∴.20、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.21、(1),(2)4【解析】(1)将M坐标代入方程即可;(2)联立直线l与抛物线方程得到A、B的横坐标,再利用焦半径公式求出即可.【小问1详解】将代入,得,解得,所以【小问2详解】由(1)得抛物线方程为,直线l的方程为,联立消y得,解得或,因为A在第一象限,所以,所以,,所以22、(1)(2)为定值【解析】(1)由题意可得解方程组求出,从而可得椭圆方程,(2)设直线AB:,,代入椭圆方程,消去,利用根与系数关系,再表示出直线AC的方程,从而可求出点Q的坐标,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论