2025届辽宁省抚顺市“抚顺六校协作体”高二上数学期末联考试题含解析_第1页
2025届辽宁省抚顺市“抚顺六校协作体”高二上数学期末联考试题含解析_第2页
2025届辽宁省抚顺市“抚顺六校协作体”高二上数学期末联考试题含解析_第3页
2025届辽宁省抚顺市“抚顺六校协作体”高二上数学期末联考试题含解析_第4页
2025届辽宁省抚顺市“抚顺六校协作体”高二上数学期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省抚顺市“抚顺六校协作体”高二上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.2.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm3.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.644.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,且则的实轴长为A.1 B.2C.4 D.85.人教A版选择性必修二教材的封面图案是斐波那契螺旋线,它被誉为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.斐波那契螺旋线的画法是:以斐波那契数1,1,2,3,5,8,…为边长的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.下图为该螺旋线在正方形边长为1,1,2,3,5,8的部分,如图建立平面直角坐标系(规定小方格的边长为1),则接下来的一段圆弧所在圆的方程为()A. B.C. D.6.已知随圆与双曲线相同的焦点,则椭圆和双曲线的离心,分别为()A. B.C. D.7.设等比数列,有下列四个命题:①{a②是等比数列;③是等比数列;④lgan其中正确命题的个数是()A.1 B.2C.3 D.48.若的解集是,则等于()A.-14 B.-6C.6 D.149.下列直线中,与直线垂直的是()A. B.C. D.10.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则11.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.6412.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列中,,,,则______14.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______15.已知曲线在点处的切线方程是,则的值为______16.如图,某湖有一半径为的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且,.定义:四边形及其内部区域为“直接监测覆盖区域”,设.则“直接监测覆盖区域”面积的最大值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,18.(12分)已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.19.(12分)在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,,且,求a.20.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B.(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率22.(10分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对4个单位分别编号,利用列举法求出概率作答.【详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D2、A【解析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【详解】由题意可得,,解得.故选:A3、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.4、B【解析】设等轴双曲线的方程为抛物线,抛物线准线方程为设等轴双曲线与抛物线的准线的两个交点,,则,将,代入,得等轴双曲线的方程为的实轴长为故选5、C【解析】由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由于每一个圆弧为四分之一圆,从而可求出下一段圆弧所以圆的圆心,进而可得其方程【详解】解:由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由题意可知下一段圆弧过点,因为每一段圆弧的圆心角都为90°,所以下一段圆弧所在圆的圆心与点的连线平行于轴,因为下一段圆弧半径为13,所以所求圆的圆心为,所以所求圆的方程为,故选:C6、B【解析】设公共焦点为,推导出,可得出,进而可求得、的值.【详解】设公共焦点为,则,则,即,故,即,,故选:B7、C【解析】根据等比数列的性质对四个命题逐一分析,由此确定正确命题的个数.【详解】是等比数列可得(为定值)①为常数,故①正确②,故②正确③为常数,故③正确④不一定为常数,故④错误故选C.【点睛】本小题主要考查等比数列的性质,属于基础题.8、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.9、C【解析】,,若,则,项,符合条件,故选10、D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.11、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A12、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##0.5【解析】直接计算得到答案.【详解】∵,,则,.故答案为:.14、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:15、11【解析】根据给定条件结合导数的几何意义直接计算作答.【详解】因曲线在点处的切线方程是,则,,所以.故答案为:1116、【解析】由题意,根据余弦定理得的值,则四边形的面积表示为,再代入面积公式化简为三角函数,根据三角函数的性质求解最大值即可.【详解】在中,,,,,,则(其中),当时,取最大值,所以“直接监测覆盖区域”面积的最大值.故答案为:.【点睛】解答本题的关键是将四边形的面积表示为,代入面积公式后化简得三角函数的解析式,再根据三角函数的性质求解最大值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;④利用回归方程进行预报;18、(1)(2)【解析】(Ⅰ)先求的定义域,再求,,,由直线方程的点斜式可求曲线在处的切线方程为(Ⅱ)构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)定义域为.当时,,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,,在单调递减,因此.综上,的取值范围是【考点】导数的几何意义,利用导数判断函数的单调性【名师点睛】求函数的单调区间的方法:(1)确定函数y=f(x)定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间19、(1);(2).【解析】(1)根据已知条件,运用余弦定理化简可求出;(2)由可求出,利用诱导公式和两角和的正弦公式求出,再利用正弦定理即求.【小问1详解】)∵且,∴,∴,∴,∵,∴.【小问2详解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.20、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故.选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.21、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论