版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省芜湖市安徽师大附中高二数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.162.已知直线和圆相交于两点.若,则的值为()A. B.C. D.3.若数列的通项公式为,则该数列的第5项为()A. B.C. D.4.已知数列为递增等比数列,,则数列的前2019项和()A. B.C. D.5.已知双曲线左右焦点为,过的直线与双曲线的右支交于,两点,且,若线段的中垂线过点,则双曲线的离心率为()A.3 B.2C. D.6.函数的图像大致是()A B.C. D.7.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.8.已知向量,,则等于()A. B.C. D.9.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的为A若α⊥γ,β⊥γ,则α∥β B.若m∥α,m∥β,则α∥βC.若m∥α,n∥α,则m∥n D.若m⊥α,n⊥α,则m∥n10.①命题设“,若,则或”;②若“”为真命题,则p,q均为真命题;③“”是函数为偶函数的必要不充分条件;④若为空间的一个基底,则构成空间的另一基底;其中正确判断的个数是()A.1 B.2C.3 D.411.120°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,,,则CD的长为()A. B.C. D.12.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)14.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.15.已知函数的导函数为,且对任意,,若,,则的取值范围是___________.16.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足各项均不为0,,且,.(1)证明:为等差数列,并求的通项公式;(2)令,,求.18.(12分)已知为坐标原点,圆的圆心在轴上,点、均在圆上.(1)求圆的标准方程;(2)若直线与椭圆交于两个不同的点、,点在圆上,求面积的最大值.19.(12分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:20.(12分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长21.(12分)已知函数,在处有极值.(1)求、的值;(2)若,有个不同实根,求的范围.22.(10分)已知a>0,b>0,a+b=1,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A2、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.3、C【解析】直接根据通项公式,求;【详解】,故选:C4、C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.5、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意又则有:可得:,,中,中.可得:解得:则有:故选:C6、B【解析】由函数有两个零点排除选项A,C;再借助导数探讨函数的单调性与极值情况即可判断作答.【详解】由得,或,选项A,C不满足;由求导得,当或时,,当时,,于是得在和上都单调递增,在上单调递减,在处取极大值,在处取极小值,D不满足,B满足.故选:B7、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.8、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.9、D【解析】根据空间线面、面面的平行,垂直关系,结合线面、面面的平行,垂直的判定定理、性质定理解决【详解】∵α⊥γ,β⊥γ,α与β的位置关系是相交或平行,故A不正确;∵m∥α,m∥β,α与β的位置关系是相交或平行,故B不正确;∵m∥α,n∥α,m与n的位置关系是相交、平行或异面∴故C不正确;∵垂直于同一平面的两条直线平行,∴D正确;故答案D【点睛】本题考查线面平行关系判定,要注意直线、平面的不确定情况10、B【解析】利用逆否命题、含有逻辑联结词命题的真假性、充分和必要条件、空间基底等知识对四个判断进行分析,由此确定正确答案.【详解】①,原命题的逆否命题为“,若且,则”,逆否命题是真命题,所以原命题是真命题,①正确.②,若“”为真命题,则p,q至少有一个真命题,②错误.③,函数为偶函数的充要条件是“”.所以“”是函数为偶函数的充分不必要条件,③错误.④,若为空间的一个基底,即不共面,若共面,则存在不全为零的,使得,故,因为为空间的一个基底,,故,矛盾,故不共面,所以构成空间的另一基底,④正确.所以正确的判断是个.故选:B11、B【解析】由,把展开整理求解【详解】由已知可得:,,,,=41,∴.故选:B12、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.14、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.15、【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性可得解.【详解】构造函数,则,故函数在上单调递减,由已知可得,由可得,可得.故答案为:.16、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,,(2)【解析】(1)根据题意,结合递推公式,易知,即可求证;(2)根据题意,结合错位相减法,即可求解.【小问1详解】∵,∴,,∴等差数列,首项为,公差为3.∴,即,.【小问2详解】根据题意,得,,①,②①-②得,故.18、(1);(2).【解析】(1)求出圆心坐标,可求得圆的半径,进而可得出圆的标准方程;(2)求得点到直线的距离,将直线的方程与椭圆的方程联立,求得的表达式,利用三角形的面积公式结合基本不等式可求得结果.【小问1详解】解:由题知,线段的中点为,直线的斜率,所以线段的中垂线为,即为,所以圆的圆心为轴与的交点,所以圆的半径,所以圆的标准方程为.【小问2详解】解:由题知:圆心到直线的距离,因为,所以圆心到直线的距离,所以到直线的距离,设点、,联立可得,,,则,所以,,所以,所以,所以当且仅当,即时等号成立,所以当时,取得最大值.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值19、(1);(2)证明见解析.【解析】(1)求出的值,可求得等差数列的公差,进而可求得数列的通项公式,再由前项和与通项的关系可求得的表达式,可求得,然后对是否满足在时的表达式进行检验,综合可得出数列的通项公式;(2)求得,利用裂项求和法可求得的表达式,利用不等式的性质和数列的单调性可证得所证不等式成立.【小问1详解】解:因为,,所以,因为,,所以,设数列公差为,则,所以,当时,由,可得,所以,所以,因为满足,所以,对任意的,【小问2详解】证明:因为,所以,因为,所以,因为,所以,故数列单调递增,当时,,所以20、(1)证明见解析;(2).【解析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内两条相交直线∴平面平面∴(2)设,因为,且所以,设,在等腰直角三角形中,取BC的中点E,连结AE,则,取BC1的中点为P,连结DP,∵,∴,又为的中点,∴,∴,即的高为∴,∵,且∴平面,∵平面,且即到平面的距离为1,而由,即解得:,即.【点睛】立体几何解答题(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积,常用的方法有:(1)直接法;(2)等体积法;(3)补形法;(4)向量法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农业技术推广新合同
- 治疗用红外线辐射装置产品供应链分析
- 2024年度互联网保险服务合同
- 注射针市场需求与消费特点分析
- 2024年度影视制作合同:影视制作公司与导演之间的合作协议
- 无线电测向仪市场发展现状调查及供需格局分析预测报告
- 2024年度新材料研发与生产线建设合同
- 2024年度汽车销售物流服务合同
- 2024年度智能家居系统开发与合同
- 2024年度影视制作与宣传合同
- 教师中级职称工作总结范文(二篇)
- Pixhawk飞控概览、快速入门
- 前庭性偏头痛诊断
- 部编版四年级语文下册第一单元大单元作业设计
- 压力容器质量安全风险管控清单
- 一年级上册数学说课稿24:得数在5以内的加法-苏教版
- 《使市场在资源配置中起决定作用》
- 13-仿生设计案例
- where引导的三大从句课件公开课一等奖市赛课一等奖课件
- 轴类零件数控加工工艺分析-毕业论文
- 建筑施工安全风险辨识分级管控(台账)清单
评论
0/150
提交评论