版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省上饶市铅山一中、横峰中学高一上数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值2.已知,,则下列说法正确的是()A. B.C. D.3.设函数在区间上为偶函数,则的值为()A.-1 B.1C.2 D.34.已知,,,则大小关系为()A. B.C. D.5.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.6.函数的定义域为()A. B.C. D.R7.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.08.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.89.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.10.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则实数的值为______.12.已知函数,若存在,使得,则的取值范围为_____________.13.若是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线,则在平面内,一定不存在与直线平行的直线②若直线,则在平面内,一定存在无数条直线与直线垂直③若直线,则在平面内,不一定存在与直线垂直的直线④若直线,则在平面内,一定存在与直线垂直的直线14.已知在同一平面内,为锐角,则实数组成的集合为_________15.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.16.写出一个最小正周期为2的奇函数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.筒车是我国古代发哪的一种水利灌溉工具,因其经济环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中描绘了筒车的工作原理.如图1是一个半径为R(单位:米),有24个盛水筒的筒车,按逆时针方向匀速旋转,转一周需要120秒,为了研究某个盛水筒P离水面高度h(单位,米)与时间t(单位:秒)的变化关系,建立如图2所示的平面直角坐标系xOy.已知时P的初始位置为点(此时P装满水).(1)P从出发到开始倒水入槽需要用时40秒,求此刻P距离水面的高度(结果精确到0.1);(2)记与P相邻的下一个盛水筒为Q,在简车旋转一周的过程中,求P与Q距离水面高度差的最大值(结果精确到0.1)参考数据:,,,18.已知(1)化简;(2)若=2,求的值.19.已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.20.已知函数(1)判断在区间上的单调性,并用定义证明;(2)求在区间上的值域21.已知直线,.(1)若,求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B2、B【解析】利用对数函数以及指数函数的性质判断即可.【详解】∵,∴,∵,∴,∵,∴,则故选:.3、B【解析】由区间的对称性得到,解出b;利用偶函数,得到,解出a,即可求出.【详解】因为函数在区间上为偶函数,所以,解得又为偶函数,所以,即,解得:a=-1.所以.故选:B4、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.5、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A6、D【解析】利用指数函数的性质即可得出选项.【详解】指数函数的定义域为R.故选:D7、D【解析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D8、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.9、D【解析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【点睛】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.10、A【解析】,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:12、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.13、②④【解析】①当时,在平面内存在与直线平行的直线.②若直线,则平面的交线必与直线垂直,而在平面内与平面的交线平行的直线有无数条,因此在平面内,一定存在无数条直线与直线垂直.③当直线为平面的交线时,在平面内一定存在与直线垂直的直线.④当直线为平面的交线,或与交线平行,或垂直于平面时,显然在平面内一定存在与直线垂直的直线.当直线为平面斜线时,过直线上一点作直线垂直平面,设直线在平面上射影为,则平面内作直线垂直于,则必有直线垂直于直线,因此在平面内,一定存在与直线垂直的直线考点:直线与平面平行与垂直关系14、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.15、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.16、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m(2)m【解析】(1)根据题意P从出发到开始倒水入槽用时40秒,可知线段OA按逆时针方向旋转了,由,可求圆的半径,由题意可知以OA为终边的角为,由此即可求出P距离水面的高度;(2)由题意可知P转动的角速度为rad/s,易知P开始转动t秒后距离水面的高度的解析式,设P,Q两个盛水筒分别用点B,C表示,易知,点C相对于点B始终落后rad,求出Q距离水面的高度,可得则P,Q距离水面的高度差,再根据三角函数的性质,即可求出结果.【小问1详解】解:由于筒车转一周需要120秒,所以P从出发到开始倒水入槽的40秒,线段OA按逆时针方向旋转了,因为A点坐标为,得,以OA为终边的角为,所以P距离水面的高度m【小问2详解】解:由于筒车转一周需要120秒,可知P转动的角速度为rad/s,又以OA为终边的角为,则P开始转动t秒后距离水面的高度,如图,P,Q两个盛水筒分别用点B,C表示,则,点C相对于点B始终落后rad,此时Q距离水面的高度则P,Q距离水面的高度差,利用,可得当或,即或时,最大值为所以,筒车旋转一周的过程中,P与Q距离水面高度差的最大值约为m18、(1)=(2)2【解析】(1)利用诱导公式即可化简.(2)利用同角三角函数的基本关系化简并将(1)中的数据代入即可.【详解】解:(1).(2)由(1)知,【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系“齐次式”的运算,需熟记公式,属于基础题.19、(1);;(2);.【解析】(1)利用余弦函数的周期公式计算可得最小正周期,借助余弦函数单调增区间列出不等式求解作答.(2)求出函数的相位范围,再利用余弦函数性质求出最小值作答.【小问1详解】函数中,由得的最小正周期,由,解得,即函数在上单调递增,所以的最小正周期是,单调递增区间是.【小问2详解】当时,,则当,即时,,所以函数的最小值为,此时.20、(1)在区间上单调递增,证明见解析(2)【解析】(1)利用定义法,设出,通过做差比较的大小,即可证明;(2)根据第(1)问得到在区间上的单调性,在区间直接赋值即可求解值域.【小问1详解】在区间上单调递增,证明如下:,且,有因为,且,所以,于是,即故在区间上单调递增【小问2详解】由第(1)问结论可知,因为在区间上单调递增,,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买卖合同第三方保证担保合同(2024版)
- 二零二五年度旅行社旅游培训合作合同4篇
- 2025年度女方婚内出轨离婚财产分割及赡养费协议
- 2025年度个人商铺租赁合同能源消耗监测与管理合同4篇
- 2025年度个人与企业间特殊用途车辆租赁合同3篇
- 二零二五年度农民工劳动保护补贴发放合同标准
- 2024苗木运输合同范本全面规范运输过程中的风险防控3篇
- 二零二五年度加油站LED广告屏安装装修合同3篇
- 二零二五年度农业科技园区运营管理服务合同-@-1
- 二零二五年度企业内部讲师培训班报名协议4篇
- 2024年全国体育专业单独招生考试数学试卷试题真题(含答案)
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- DB45T 1950-2019 对叶百部生产技术规程
- 2025届河北省衡水市衡水中学高考仿真模拟英语试卷含解析
- 新修订《保密法》知识考试题及答案
- 电工基础知识培训课程
- 住宅楼安全性检测鉴定方案
- 广东省潮州市潮安区2023-2024学年五年级上学期期末考试数学试题
- 市政道路及设施零星养护服务技术方案(技术标)
- 选择性必修一 期末综合测试(二)(解析版)2021-2022学年人教版(2019)高二数学选修一
- 《论语》学而篇-第一课件
评论
0/150
提交评论