版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省青岛第三中学高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.2.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.3.已知a,b,c,d均为实数,则下列命题正确的是()A.若,,则B.若,,则C.若,则D.若,则4.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称5.已知集合,则()A. B.或C. D.或6.函数的部分图象如图所示,则的值分别是()A. B.C. D.7.在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x01.002.03.0y0.240.5112.023.988.02在四个函数模型(a,b为待定系数)中,最能反映,y函数关系的是().A. B.C. D.8.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.
4,6
B.C
D.9.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.10.已知平行四边形的对角线相交于点点在的内部(不含边界).若则实数对可以是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量不平行,向量与平行,则实数_________.12.已知函数在区间是单调递增函数,则实数的取值范围是______13.______________14.设函数,则____________15.函数的定义域是___________.16.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求的值;(2)计算:.18.已知函数的图象关于原点对称(1)求实数b的值;(2)若对任意的,有恒成立,求实数k的取值范围19.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.20.已知函数的部分图象如图所示.(1)求函数的解析式和单调增区间;(2)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,若关于的方程在区间上有两个不同的解、,求的值及实数的取值范围.21.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理2、B【解析】,由,得,,时,为,故选B3、B【解析】利用不等式的性质逐项判断可得出合适的选项.【详解】对于A选项,若,,则,故,A错;对于B选项,若,,则,所以,,故,B对;对于C选项,若,则,则,C错;对于D选项,若,则,所以,,D错.故选:B.4、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.5、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..6、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.7、B【解析】由题中表格数据画出散点图,由图观察实验室指数型函数图象【详解】由题中表格数据画出散点图,如图所示,观察图象,类似于指数函数对于A,是一次函数,图象是一条直线,所以A错误,对于B,是指数型函数,所以B正确,对于C,是对数型函数,由于表中的取到了负数,所以C错误,对于D,是反比例型函数,图象是双曲线,所以D错误,故选:B8、B【解析】利用交、并、补集运算,对答案项逐一验证即可【详解】,A错误={2,3,4,5,6,7}=,B正确
{3,4,5,7},C错误,,D错误故选:B【点睛】本题考查集合的混合运算,较简单9、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.10、B【解析】分析:根据x,y值确定P点位置,逐一验证.详解:因为,所以P在线段BD上,不合题意,舍去;因为,所以P在线段OD外侧,符合题意,因为,所以P在线段OB内侧,不合题意,舍去;因为,所以P在线段OD内侧,不合题意,舍去;选B.点睛:若,则三点共线,利用这个充要关系可确定点的位置.二、填空题:本大题共6小题,每小题5分,共30分。11、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:12、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:13、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.14、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.15、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.16、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2).【解析】(1)把所给的式子进行平方运算,即可求出的值,找到和的关系即可求出的值;(2)化根式为分数指数幂,把对数式的真数用对数的运算性质拆开,再用对数的运算性质求解即可.【详解】(1)由得,由得,故.(2)18、(1)-1(2)【解析】(1)由得出实数b的值,再验证奇偶性即可;(2)由结合函数的单调性解不等式,结合基本不等式求解得出实数k的取值范围【小问1详解】∵函数的定义域为R,且为奇函数,解得经检验,当b=-1时,为奇函数,满足题意故实数b的值为-1【小问2详解】,∴f(x)在R上单调递增,在上恒成立,在上恒成立(当且仅当x=0时,取“=”),则∴实数k的取值范围为19、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的单调递增区间是.【小问2详解】令,因为,所以,即,当,即时,函数取得最大值,因此的最大值为,此时自变量的值为;当,即时,函数取得最小值,因此的最小值为,此时自变量的值为.20、(1),增区间为;(2),.【解析】(1)结合图象和,求得的值,再根据,,求得的解析式,然后利用正弦函数的单调性,即可得解;(2)根据函数图象的变换法则写出的解析式,再结合正弦函数的对称性以及图象,即可得解.【小问1详解】解:设的最小正周期为,由图象可知,则,故,又,所以,即,所以,所以,因为,所以,所以,所以,所以,令,则,故的单调增区间为.【小问2详解】解:将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变),得的图象,由,知,由可得,由可得,若关于的方程在区间上有两个不同的解、,则点、关于直线对称,故,所以,,作出函数与函数在区间上的图象如下图所示:由图可知,当时,即当时,函数与函数在区间上的图象有两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省衡水市景县中学2025届生物高一上期末检测试题含解析
- 宜昌市重点中学2025届高三语文第一学期期末质量跟踪监视试题含解析
- 2025届江西省宜春市上高县二中生物高一第一学期期末经典模拟试题含解析
- 双鸭山市重点中学2025届高二生物第一学期期末学业质量监测模拟试题含解析
- 四川省普通高中2025届生物高三上期末调研试题含解析
- 2025届广东二师学院番禺附学英语高三第一学期期末联考模拟试题含解析
- 河南省郑州市中原区第一中学2025届数学高二上期末检测模拟试题含解析
- 2025届青海省互助县第一中学数学高一上期末学业质量监测试题含解析
- 天津市一中2025届生物高二上期末联考模拟试题含解析
- 山西省朔州市第二中学2025届高二上数学期末学业质量监测试题含解析
- 压力管道安装许可规则-TSG D3001-2021
- 煤气中毒事故应急演练预案方案
- 体检科医疗质量控制工作计划
- 国有公司总部礼品管理办法 模版
- 口腔颌面部检查课件
- 2020年重症医学科病人呼吸心跳骤停演练方案及脚本
- 平衡记分卡应用流程
- 呼吸道感染病毒培训课件
- 重症超声课件
- 物联网信息安全知识考核试题与答案
- 车辆驾驶业务外包服务方案
评论
0/150
提交评论