版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市中原区第一中学2025届数学高二上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:,;命题:,使,若“”为假命题,则实数的取值范围是()A. B.C. D.2.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.3.在等差数列中,若,,则公差d=()A. B.C.3 D.-34.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°5.已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A. B.C. D.6.已知直线与圆相离,则以,,为边长的三角形为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不存在7.双曲线的焦点坐标为()A. B.C. D.8.一质点的运动方程为(位移单位:m,时间单位:s),则该质点在时的瞬时速度为()A.4 B.12C.15 D.219.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆10.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.11.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.12.抛物线的准线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.14.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.15.已知椭圆()中,成等比数列,则椭圆的离心率为_______.16.半径为R的圆外接于,且,若,则面积的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边的垂直平分线所在的直线的方程;(2)若面积为5,求点的坐标18.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.19.(12分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小20.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,21.(12分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长22.(10分)小张在2020年初向建行贷款50万元先购房,银行贷款的年利率为4%,要求从贷款开始到2030年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,判断命题和的真假性,结合判别式与二次函数恒成立问题,即可求解.【详解】根据题意,由为假命题可得“”为真命题,即p、q都为真命题,故,解得故选:D2、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B3、C【解析】由等差数列的通项公式计算【详解】因为,,所以.故选:C【点睛】本题考查等差数列的通项公式,利用等差数列通项公式可得,4、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.5、B【解析】根据焦点在x轴上的双曲线渐近线斜率为±可求a,b关系,再结合a,b,c关系即可求解﹒【详解】∵双曲线1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴双曲线的方程为故选:B6、A【解析】应用直线与圆的相离关系可得,再由余弦定理及三角形内角的性质即可判断三角形的形状.【详解】由题设,,即,又,所以,且,故以,,为边长的三角形为钝角三角形.故选:A.7、C【解析】把双曲线方程化为标准形式,直接写出焦点坐标.【详解】,焦点在轴上,,故焦点坐标为.故选:C.8、B【解析】由瞬时变化率的定义,代入公式求解计算.【详解】由题意,该质点在时的瞬时速度为.故选:B9、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.10、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.12、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.14、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒15、【解析】根据成等比数列,可得,再根据的关系可得,然后结合的自身范围解方程即可求出【详解】∵成等比数列,∴,∴,∴,∴,又,∴故答案为:【点睛】本题主要考查椭圆的离心率的计算以及等比数列定义的应用,意在考查学生的数学运算能力,属于基础题16、【解析】利用正弦定理将已知条件转化为边之间的关系,然后用余弦定理求得C;利用三角形面积公式,结合两角差的正弦函数公式和二倍角公式得,再利用辅助角公式得,最后利用函数的值域计算得结论.【详解】因为所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以当时,S最大,.若,则面积的最大值为.故答案为:.【点睛】本题考查了两角和与差的三角函数公式,二倍角公式及应用,正弦定理,余弦定理,三角形面积公式,函数的图象与性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或18、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.19、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形是平行四边形,从而证明结论.(2)以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,利用向量法求解线面角.【小问1详解】如图,连接在正方体中,且因为,分别是,的中点,所以且又因为是的中点,所以,且,所以四边形是平行四边形,所以【小问2详解】以为坐标原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系设,则,,,,,,设为平面的法向量因为,,,所以令,得设直线与平面所成角为,则因为,所以直线与平面所成角的大小为20、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;④利用回归方程进行预报;21、(1)见解析;(2)2+4.【解析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△OAB的周长【详解】(1)抛物线y2=8x的顶点、焦点、准线、对称轴、变量x的范围分别为(0,0),(2,0),x=-2,x轴,x≥0.(2)如图所示.由|OA|=|OB|可知AB⊥x轴,垂足为点M,又焦点F是△OAB的重心,则|OF|=|OM|.因为F(2,0),所以|OM|=|OF|=3.所以M(3,0).故设A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《文献管理解决方案》课件
- 《线路运行和维护》课件
- 定龙水库2024年度垂钓经营权合同3篇
- 区块链技术研发与应用合同(04版)
- 运输挂靠协议合同范本 2篇
- 文化艺术品展览居间合同
- 小学语文教师个人工作计划
- 幼儿园司机合同(2篇)
- 2024年度学校教学楼钢管架搭建合同
- 南京市2024年度标准房屋租赁合同(示范文本)
- 人美版小学美术六年级上册第三课《添画人像》单元作业设计
- 过程审核程序
- 高中劳动教育-主题班会课件
- 小学主题班会教学设计 《学会说声对不起》通用版
- 苏科版初中初一数学上册《有理数》评课稿
- 连铸设备操作维护规程检修规程
- 元素周期表英文版含音标
- 危急值报告制度有效性评估(PDCA)记录单
- 纪检监察组织监督招标管理工作实施办法
- 2023春国开现代教育管理专题形考任务1-4试题及答案
- 五年级科学期中考试质量分析
评论
0/150
提交评论