版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省五校联考高一上数学期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数的部分图象如图所示,若,且,则()A. B.C. D.2.已知直线,圆.点为直线上的动点,过点作圆的切线,切点分别为.当四边形面积最小时,直线方程是()A. B.C. D.3.如下图所示,在正方体中,下列结论正确的是A.直线与直线所成的角是 B.直线与平面所成的角是C.二面角的大小是 D.直线与平面所成的角是4.已知函数,,则函数的值域为()A. B.C. D.5.如图所示的是用斜二测画法画出的的直观图(图中虚线分别与轴,轴平行),则原图形的面积是()A.8 B.16C.32 D.646.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.7.函数的值域是A. B.C. D.8.下列函数在定义域内单调递增的是()A. B.C. D.9.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.已知平面直角坐标系中,的顶点坐标分别为、、,为所在平面内的一点,且满足,则点的坐标为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算_________.12.已知扇形的弧长为,且半径为,则扇形的面积是__________.13.将函数y=sinx的图象上的所有点向右平移个单位长度,所得图象的函数解析式为_________.14.设,则________.15.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.16.设,,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数,时的图象,且图象的最高点为,赛道的中部分为长千米的直线跑道,且,赛道的后一部分是以为圆心的一段圆弧(1)求的值和的大小;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值18.已知集合,(1)当时,求;(2)若,求a的取值范围;19.黔东南州某银行柜台异地跨行转账手续费的收费标准为;转账不超过200元,每笔收1元:转账不超过10000元,每笔收转账金额的0.5%:转账超过10000元时每笔收50元,张黔需要在该银行柜台进行一笔异地跨行转账的业务.(1)若张黔转账的金额为x元,手续费为y元,请将y表示为x的函数:(2)若张黔转账的金额为10t-3996元,他支付的于练费大于5元且小了50元,求t的取值范围.20.已知向量,,设函数=+(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域21.已知集合,记函数的定义域为集合B.(1)当a=1时,求A∪B;(2)若“x∈A”是“x∈B”的充分不必要条件,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C2、B【解析】求得点C到直线l的距离d,根据,等号成立时,求得点P,进而求得过的圆的方程,与已知圆的方程联立求解.【详解】设点C到直线l的距离为,由,此时,,方程为,即,与直线联立得,因为共圆,其圆心为,半径为,圆的方程为,与联立,化简整理得,答案:B3、D【解析】选项,连接,,因为,所以直线与直线所成的角为,故错;选项,因为平面,故为直线与平面所成的角,根据题意;选项,因为平面,所以,故二面角的平面角为,故错;用排除法,选故选:D4、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B5、C【解析】由斜二测画法知识得原图形底和高【详解】原图形中,,边上的高为,故面积为32故选:C6、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.7、C【解析】函数中,因为所以.有.故选C.8、D【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案详解】解:根据题意,依次分析选项:对于A,,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,,是指数函数,在定义域内单调递减,不符合题意;对于D,,是对数函数,在定义域内单调递增,符合题意;故选:D9、B【解析】找到与终边相等的角,进而判断出是第几象限角.【详解】因为,所以角和角是终边相同的角,因为角是第二象限角,所以角是第二象限角.故选:B.10、A【解析】设点的坐标为,根据向量的坐标运算得出关于、的方程组,解出这两个未知数,可得出点的坐标.【详解】设点的坐标为,,,,,即,解得,因此,点的坐标为.故选:A.【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】,故答案为112、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.13、【解析】利用相位变换直接求得.【详解】按照相位变换,把函数y=sinx的图象上的所有点向右平移个单位长度,得到.故答案为:.14、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:215、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:216、【解析】利用向量的坐标运算先求出的坐标,再利用向量的数量积公式求出的值【详解】因为,,,所以,所以,故答案为【点睛】本题考查向量的坐标运算,考查向量的数量积公式,熟记坐标运算法则,准确计算是关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值试题解析:(1)由条件得.∴.∴曲线段的解析式为.当时,.又,∴,∴.(2)由(1),可知.又易知当“矩形草坪”的面积最大时,点在弧上,故.设,,“矩形草坪”的面积为.∵,∴,故当,即时,取得最大值18、(1),(2)【解析】(1)计算得到,,计算得到答案.(2)所以,讨论和两种情况计算得到答案.【详解】(1)因为,所以,因为,所以(2)因为,所以,当时,,即;当时,,即.综上所述:a的取值范围为.【点睛】本题考查了集合的运算,根据集合的包含关系求参数,忽略掉空集是容易发生的错误.19、(1)(2)【解析】(1)根据已知条件,写成分段函数,即可求解;(2)根据已知条件,结合指数函数的性质,即可求解【小问1详解】解:当时,,当时,,当时,,故;【小问2详解】解:从(1)中的分段函数得,如果张黔支付的手续费大于5元且小于50元,则转账金额大于1000元,且小于10000元,则只需要考虑当时的情况即可,由,所以,得,得,即实数t的取值范围是20、(1);;(2)【解析】(1)根据向量数量积的坐标运算及辅助角公式,可得,然后由周期公式去求周期,再结合正弦函数的单调性去求函数的单调递增区间;(2)由(1)知,由求出,再结合正弦函数的单调性去求函数的值域【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《文献管理解决方案》课件
- 《线路运行和维护》课件
- 定龙水库2024年度垂钓经营权合同3篇
- 区块链技术研发与应用合同(04版)
- 运输挂靠协议合同范本 2篇
- 文化艺术品展览居间合同
- 小学语文教师个人工作计划
- 幼儿园司机合同(2篇)
- 2024年度学校教学楼钢管架搭建合同
- 南京市2024年度标准房屋租赁合同(示范文本)
- 过程审核程序
- 高中劳动教育-主题班会课件
- 工程力学实验报告-2
- 小学主题班会教学设计 《学会说声对不起》通用版
- 苏科版初中初一数学上册《有理数》评课稿
- 连铸设备操作维护规程检修规程
- 元素周期表英文版含音标
- 危急值报告制度有效性评估(PDCA)记录单
- 纪检监察组织监督招标管理工作实施办法
- 2023春国开现代教育管理专题形考任务1-4试题及答案
- 五年级科学期中考试质量分析
评论
0/150
提交评论