版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
揭阳市重点中学2025届数学高一上期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.22.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.如图,网格纸上小正方形的边长为,粗实线画出的是某“堑堵”的三视图,则该“堑堵”的侧面积为()A.48 B.42C.36 D.303.如图,在棱长为1的正方体中,三棱锥的体积为()A. B.C. D.4.下列各角中,与终边相同的角为()A. B.160°C. D.360°5.函数的部分图象如图所示,则可能是()A. B.C. D.6.与角的终边相同的最小正角是()A. B.C. D.7.在直角坐标系中,已知,那么角的终边与单位圆坐标为()A. B.C. D.8.已知,则A.-2 B.-1C. D.29.已知,,则的大小关系是A. B.C. D.10.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则=_________12.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________13.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________14.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________15.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________16.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.18.计算(1);(2).19.已知函数,.(1)利用定义证明函数单调递增;(2)求函数的最大值和最小值.20.如图,在四棱锥中,底面ABCD为平行四边形,,平面底面ABCD,M是棱PC上的点.(1)证明:底面;(2)若三棱锥的体积是四棱锥体积的,设,试确定的值.21.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2、C【解析】由三视图可知该“堑堵”的高为,其底面是直角边为,斜边为的三角形,从而可求出其侧面积.【详解】解:由三视图易得该“堑堵”的高为,其底面是直角边为,斜边为的三角形,故其侧面积为.故选:C.3、A【解析】用正方体的体积减去四个三棱锥的体积【详解】由,故选:A4、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C5、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,,得到正确答案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,,解得:,,当时,,故A正确,其他选项均不合要求.故选:A6、D【解析】写出与角终边相同的角的集合,即可得出结论.【详解】与角终边相同角的集合为,当时,取得最小正角为.故选:D.7、A【解析】利用任意角的三角函数的定义求解即可【详解】因为,所以角的终边与单位圆坐标为,故选:A8、B【解析】,,则,故选B.9、D【解析】因为,故,同理,但,故,又,故即,综上,选D点睛:对于对数,如果或,那么;如果或,那么10、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按照解析式直接计算即可.【详解】.故答案为:-3.12、【解析】根据扇形的面积公式,计算即可.【详解】由扇形面积公式知,.【点睛】本题主要考查了扇形的面积公式,属于容易题.13、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线14、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.15、【解析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:16、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求得集合,根据集合的交集、并集和补集的运算,即可求解;(2)由,所以,结合集合的包含关系,即可求解.【详解】(1)由题意,集合,因为集合,则,所以,.(2)由题意,因为,所以,又因为,,所以,即实数的取值范围为.【点睛】本题主要考查了集合的交集、并集和补集的运算,以及利用集合的包含关系求解参数问题,其中解答中熟记集合的基本运算,以及合理利用集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)2(2)【解析】(1)根据对数计算公式,即可求得答案;(2)将化简为,即可求得答案.【小问1详解】【小问2详解】19、(1)证明见详解;(2)最大值;最小值.【解析】(1)任取、且,求,因式分解,然后判断的符号,进而可得出函数的单调性;(2)利用(1)中的结论可求得函数的最大值和最小值.【详解】(1)任取、且,因为,所以,,,,,,即,因此,函数在区间上为增函数;(2)由(1)知,当时,函数取得最小值;当时,函数取得最大值.【点睛】关键点睛:求函数的最值利用函数的单调性是解决本题的关键.20、(1)详见解析;(2).【解析】(1)利用面面垂直的性质定理,可得平面,然后利用线面垂直的判定定理即证;(2)由题可得,进而可得,即得.【小问1详解】∵,平面底面ABCD,∴,平面底面ABCD=AD,底面ABCD,∴平面,平面,∴PD,又,∴,,∴底面;【小问2详解】设,M到底面ABCD的距离为,∵三棱锥的体积是四棱锥体积的,∴,又,,∴,故,又,所以.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权使用许可合同(含数字化重制条款)
- 筛砂机市场需求与消费特点分析
- 2024年度技术服务合同服务内容和ServiceLevelAgreement(SLA)
- 2024年度房地产销售代理合同:某开发商与房地产销售公司关于住宅小区销售代理协议
- 运载工具用聚光灯项目评价分析报告
- 2024年度版权转让及发行权合同
- 2024年度版权许可使用合同(含版权内容、许可范围与使用期限)
- 2024年度版权许可使用合同标的描述
- 2024年度办公场地租赁合同书
- 2024年度叉车安全检测中心与物流公司检测合同
- 我们如何做课题研究课件
- 《电气接线规范》课件
- 绞窄性肠梗阻汇报演示课件
- 直肠癌放疗护理查房课件
- 2024年北京北燃实业集团招聘笔试参考题库含答案解析
- c4 水稻的研究现状及机制
- 2024年通用技术集团招聘笔试参考题库含答案解析
- 【公开课】海水的性质课件+2023-2024学年高中地理人教版(2019)必修一+
- 《装配式建筑施工合同范本》正规范本(通用版)
- 2022年天津卷语文模拟卷汇编-文言文阅读(解析版)
- 《体育保健学》课件-第三章 运动性病症
评论
0/150
提交评论