2025届河北省保定市曲阳县第一高级中学高二上数学期末质量检测试题含解析_第1页
2025届河北省保定市曲阳县第一高级中学高二上数学期末质量检测试题含解析_第2页
2025届河北省保定市曲阳县第一高级中学高二上数学期末质量检测试题含解析_第3页
2025届河北省保定市曲阳县第一高级中学高二上数学期末质量检测试题含解析_第4页
2025届河北省保定市曲阳县第一高级中学高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省保定市曲阳县第一高级中学高二上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是函数的导函数,则()A0 B.2C.4 D.62.已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A. B.C. D.3.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的运用,最具代表性的便是园林中的门洞.如图,某园林中的圆弧形挪动高为2.5m,底面宽为1m,则该门洞的半径为()A.1.2m B.1.3mC.1.4m D.1.5m4.命题;命题.则A.“或”为假 B.“且”为真C.真假 D.假真5.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内6.命题:,否定是()A., B.,C., D.,7.“,”的否定是A., B.,C., D.,8.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.9.已知等差数列的公差,是与的等比中项,则()A. B.C. D.10.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切11.在等差数列中,若,则()A.5 B.6C.7 D.812.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,若抛物线上的点P到该抛物线焦点的距离为5,则点P的纵坐标为_______14.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;15.已知双曲线的右焦点为,过点作轴的垂线,在第一象限与双曲线及其渐近线分别交于,两点.若,则双曲线的离心率为___________.16.曲线在点处的切线方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求函数的单调区间;(2)设存在两个极值点,且,若,求证:.18.(12分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.19.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值20.(12分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.21.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.22.(10分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由导数运算法则求出导函数,再计算导数值【详解】由题意,,所以故选:D2、A【解析】设,,则、,由点在圆上可得,再由向量垂直的坐标表示可得,进而可得M的轨迹为圆,即可求的最大值.【详解】设,中点,则,,又,,则,所以,又,则,而,,所以,即,综上,,整理得,即为M的轨迹方程,所以在圆心为,半径为的圆上,则.故选:A.【点睛】关键点点睛:由点圆位置、中点坐标公式及向量垂直的坐标表示得到关于的轨迹方程.3、B【解析】设半径为R,根据垂径定理可以列方程求解即可.【详解】设半径为R,,解得,化简得.故选:B.4、D【解析】命题:可能为0,不为0,假命题,命题:,为真命题,所以“或”为真命题,“且”为假命题.选D.5、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D6、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D7、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.8、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B9、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.10、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C11、B【解析】由得出.【详解】由可得,故选:B12、D【解析】的否定是,的否定是,的否定是.故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据抛物线的定义,列出方程,即可得答案.【详解】由题意:抛物线的准线为,设点P的纵坐标为,由抛物线定义可得,解得,所以点P的纵坐标为4.故答案为:414、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.15、【解析】按题意求得,两点坐标,以代数式表达出条件,即可得到关于的关系式,进而解得双曲线的离心率.【详解】双曲线的右焦点为,其渐近线为,垂线方程为,则,,,由,得,即即,则,离心率故答案为:16、【解析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.【详解】函数的导数为,所以切线的斜率,切点为,则切线方程为故答案为:【点睛】易错点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点,考查学生的运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在和上单调递增,在上单调递减;(2)证明见解析【解析】(1)首先求出函数的导函数,再令、,分别求出函数的单调区间;(2)先求出,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论【小问1详解】解:当时,,所以,令,解得或,令,解得,所以函数在和上单调递增,在上单调递减;【小问2详解】解:,,,因为存在两个极值点,,所以存在两个互异的正实数根,,所以,,则,所以,所以,令,则,,,在上单调递减,,而,即,18、(1)(2)【解析】(1)对,利用正弦定理和诱导公式整理化简得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值为1,代入面积公式求面积.【小问1详解】对于.由正弦定理知:即.所以.所以.所以因为,,所以.所以.因为,所以.【小问2详解】因为,由正弦定理知:.由余弦定理知:,所以.当且仅当时,等号成立,所以ab的最大值为1.所以,即面积的最大值为.19、(1)证明见解析;(2)【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、(1)圆心的坐标为,半径;(2)【解析】(1)利用配方法化圆的一般方程为标准方程,可得圆心坐标与半径;(2)由两点间的距离公式求得,得到与,则的取值范围可求【小问1详解】解:由,得,圆心的坐标为,半径;【小问2详解】解:,,,,的取值范围是21、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关键.一般地,当等式中含有a,b,c的关系式,且全为二次时,可利用余弦定理进行化简;当含有内角的正弦值及边的关系,且为一次式时,可考虑采用正弦定理进行边角互化.22、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论