2025届黑龙江省牡丹江市五县市高二上数学期末质量检测试题含解析_第1页
2025届黑龙江省牡丹江市五县市高二上数学期末质量检测试题含解析_第2页
2025届黑龙江省牡丹江市五县市高二上数学期末质量检测试题含解析_第3页
2025届黑龙江省牡丹江市五县市高二上数学期末质量检测试题含解析_第4页
2025届黑龙江省牡丹江市五县市高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省牡丹江市五县市高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与直线平行,则()A. B.C. D.2.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-23.抛物线的焦点坐标A. B.C. D.4.在等差数列中,若,则()A.6 B.9C.11 D.245.已知抛物线上的点到该抛物线焦点的距离为,则抛物线的方程是()A. B.C. D.6.圆关于直线对称圆的标准方程是()A. B.C. D.7.在下列四条抛物线中,焦点到准线的距离为1的是()A. B.C. D.8.直线与圆的位置关系是()A.相交 B.相切C.相离 D.不确定9.已知等差数列{an}中,a4+a9=8,则S12=()A.96 B.48C.36 D.2410.已知点是椭圆上一点,点,则的最小值为A. B.C. D.11.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.812.在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,点E是棱PC的中点,作,交PB于F.下面结论正确的个数为()①∥平面EDB;②平面EFD;③直线DE与PA所成角为60°;④点B到平面PAC的距离为.A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.等比数列的前项和为,则的值为_____14.已知为直线上的动点,为函数图象上的动点,则的最小值为______15.如图,用四种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法的种数为______(用数字作答)16.在数列中,,,则数列中最大项的数值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.18.(12分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.19.(12分)为了解某市家庭用电量的情况,该市统计局调查了若干户居民去年一年的月均用电量(单位:),得到如图所示的频率分布直方图.(1)估计月均用电量的众数;(2)求a的值;(3)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,月均用电量不高于平均数的为第一档,高于平均数的为第二档,已知某户居民月均用电量为,请问该户居民应该按那一档电价收费,说明理由.20.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由21.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.22.(10分)已知数列的前n项和,满足,.(1)求证:数列是等差数列;(2)令,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.2、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.3、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B4、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B5、B【解析】由抛物线知识得出准线方程,再由点到焦点的距离等于其到准线的距离求出,从而得出方程.【详解】由题意知,则准线为,点到焦点的距离等于其到准线的距离,即,∴,则故选:B.6、D【解析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.7、D【解析】由题意可知,然后分析判断即可【详解】由题意知,即可满足题意,故A,B,C错误,D正确.故选:D8、A【解析】首先求出直线过定点,再判断点在圆内,即可判断;【详解】解:直线恒过定点,又,即点在圆内部,所以直线与圆相交;故选:A9、B【解析】利用等差数列的性质求解即可.【详解】解:由等差数列的性质得.故选:B10、D【解析】设,则,.所以当时,的最小值为.故选D.11、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.12、D【解析】①由题意连接交于,连接,则是中位线,证出,由线面平行的判定定理知∥平面;②由底面,得,再由证出平面,即得,再由是正方形证出平面,则有,再由条件证出平面;③根据边长证明△DEO是等边三角形即可;④根据等体积法即可求.【详解】①如图所示,连接交于点,连接底面是正方形,点是的中点在中,是中位线,而平面且平面,∥平面;故①正确;②如图所示,底面,且平面,,,是等腰直角三角形,又是斜边的中线,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正确;③如图所示,连接AC交BD与O,连接OE,由OE是三角形PAC中位线知OE∥PA,故∠DEO为异面直线PA和DE所成角或其补角,由②可知DE=,OD=,OE=,∴△DEO是等边三角形,∴∠DEO=60°,故③正确;④如图所示,设B到平面PAC的距离为d,由题可知PA=AC=PC=,故,由.故④正确.故正确的有:①②③④,正确的个数为4.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列前项和公式的特点列方程,解方程求得的值.【详解】由于等比数列前项和,本题中,故.故填:.【点睛】本小题主要考查等比数列前项和公式的特点,考查观察与思考的能力,属于基础题.14、【解析】求得的导数,由题意可得与直线平行的直线和曲线相切,然后求出的值最小,设出切点,求出切线方程,再由两直线平行的距离公式,得到的最小值【详解】解:函数的导数为,设与直线平行的直线与曲线相切,设切点为,则,所以,所以,所以,所以,所以切线方程为,可得的最小值为,故答案为:15、48【解析】由已知按区域分四步,然后给,,,区域分步选择颜色,由此即可求解【详解】解:由已知按区域分四步:第一步区域有4种选择,第二步区域有3种选择,第三步区域有2种选择,第四步区域也有2种选择,则由分步计数原理可得共有种,故答案为:4816、【解析】用累加法求出通项,再由通项表达式确定最大项.【详解】当时,,所以数列中最大项的数值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜率不存在和斜率存在两种情况讨论,结合点到直线的距离公式,列出方程,即可求解.(2)设点,,根据线段的中点为,求得,结合在圆上,代入即可求解.【小问1详解】解:由题意,圆,可得圆心,半径,因为直线被圆C截得的弦长为,则圆心到直线的距离为,当直线的斜率不存在时,此时直线的方程为,满足题意;当直线的斜率存在时,设直线的方程为,即,则,解得,即,综上可得,所求直线的方程为或.【小问2详解】解:设点,因为点,线段的中点为,可得,解得,又因为在圆上,可得,即,即点的轨迹方程为.18、(1)不公平,理由见解析.(2)【解析】(1)通过计算概率来进行判断.(2)利用几何概型计算出所求概率.【小问1详解】两数之和为奇数的概率为,两数之和为偶数的概率为,两个概率不相等,所以不公平.【小问2详解】设甲到的时刻为,乙到的时刻为,则,若它们中的任意一艘都不需要等待码头空出,则或,画出可行域如下图阴影部分所示,所以所求的概率为:.19、(1)175(2)0.004(3)该居民该户居民应该按第二档电价收费,理由见解析【解析】(1)在区间对应的小矩形最高,由此能求出众数;(2)利用各个区间的频率之和为1,即可求出值;(3)求出月均用电量的平均数的估计值即可判断.【小问1详解】由题知,月均用电量在区间内的居民最多,可以将这个区间的中点175作为众数的估计值,所以众数的估计值为175.【小问2详解】由题知:,解得则的值为0.004.【小问3详解】平均数的估计值为:,则月均用电量的平均数的估计值为,又∵∴该居民该户居民应该按第二档电价收费.20、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.21、(1);(2)证明见解析.【解析】(1)根据双曲线的定义可得答案;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论