甘肃省靖远第二中学2025届高二上数学期末调研模拟试题含解析_第1页
甘肃省靖远第二中学2025届高二上数学期末调研模拟试题含解析_第2页
甘肃省靖远第二中学2025届高二上数学期末调研模拟试题含解析_第3页
甘肃省靖远第二中学2025届高二上数学期末调研模拟试题含解析_第4页
甘肃省靖远第二中学2025届高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省靖远第二中学2025届高二上数学期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列中,,,则该数列的公比为()A. B.C. D.2.若直线与曲线只有一个公共点,则m的取值范围是()A. B.C.或 D.或3.在区间内随机取一个数x,则使得的概率为()A. B.C. D.4.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)5.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=06.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线7.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.8.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个9.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.10.若在直线上,则直线的一个方向向量为()A. B.C. D.11.命题:,否定是()A., B.,C., D.,12.已知椭圆的离心率,为椭圆上的一个动点,若定点,则的最大值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________14.已知递增数列共有2021项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则的范围是________________,数列的所有项和________15.,成立为真命题,则实数的取值范围______.16.已知直线与直线垂直,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆过定点,且与直线相切.(1)求动圆圆心的轨迹的方程;(2)直线过点与曲线相交于两点,问:在轴上是否存在定点,使?若存在,求点坐标,若不存在,请说明理由.18.(12分)已知函数(1)若,求曲线在处的切线方程(2)讨论函数的单调性19.(12分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:20.(12分)已知抛物线的焦点与曲线的右焦点重合.(1)求抛物线的标准方程;(2)若抛物线上的点满足,求点的坐标.21.(12分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程22.(10分)已知函数,曲线在处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求在区间上的最值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设等比数列的公比为,可得出,即可得解.【详解】设等比数列的公比为,可得出.故选:C.2、D【解析】根据曲线方程的特征,发现曲线表示在轴上方的图象,画出图形,根据图形上直线的三个特殊位置,当已知直线位于直线位置时,把已知直线的解析式代入椭圆方程中,消去得到关于的一元二次方程,由题意可知根的判别式等于0即可求出此时对应的的值;当已知直线位于直线及直线的位置时,分别求出对应的的值,写出满足题意得的范围,综上,得到所有满足题意得的取值范围【详解】根据曲线,得到,解得:;,画出曲线的图象,为椭圆在轴上边的一部分,如图所示:当直线在直线的位置时,直线与椭圆相切,故只有一个交点,把直线代入椭圆方程得:,得到,即,化简得:,解得或(舍去),则时,直线与曲线只有一个公共点;当直线在直线位置时,直线与曲线刚好有两个交点,此时,当直线在直线位置时,直线与曲线只有一个公共点,此时,则当时,直线与曲线只有一个公共点,综上,满足题意得的范围是或故选:D3、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.4、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D5、C【解析】两圆方程相减得出公共弦所在直线的方程.【详解】两圆方程相减得,即x﹣2y+6=0则公共弦所在直线的方程为x﹣2y+6=0故选:C6、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.7、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B8、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.9、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.10、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D11、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D12、C【解析】首先求得椭圆方程,然后确定的最大值即可.【详解】由题意可得:,据此可得:,椭圆方程为,设椭圆上点的坐标为,则,故:,当时,.本题选择C选项.【点睛】本题主要考查椭圆方程问题,椭圆中的最值问题等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,所以,即,故14、①.②.1011【解析】根据题意得到,得到,,,,进而得到,从而即可求得的值.【详解】由题意,递增数列共有项,各项均不为零,且,所以,所以的范围是,因为时,仍是数列中的项,即,且上述的每一项均在数列中,所以,,,,即,所以,所以.故答案为:;.15、.【解析】根据题意转化为,恒成立,得到,即可求解.【详解】由题意,命题,成立为真命题,即,恒成立,当时,,所以,即实数的取值范围.故答案为:.16、-3【解析】因为直线与直线垂直,所以考点:本题考查两直线垂直的充要条件点评:若两直线方程分别为,则他们垂直的充要条件是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】(1)利用两点间的距离公式和直线与圆相切的性质即可得出;(2)假设存在点,满足题设条件,设直线的方程,根据韦达定理即可求出点的坐标【小问1详解】设动圆的圆心,依题意:化简得:,即为动圆的圆心的轨迹的方程【小问2详解】假设存在点,满足条件,使①,显然直线斜率不为0,所以由直线过点,可设,由得设,,,,则,由①式得,,即消去,,得,即,,,存在点使得18、(1)(2)答案见解析【解析】(1)根据导数的几何意义可求得切线斜率,结合切点可得切线方程;(2)求导后,分别在、和的情况下,根据的正负可得的单调性.【小问1详解】当时,,,,又,在处的切线方程为:,即;【小问2详解】,令,解得:,;当时,,在上单调递增;当时,若或,则;若,则;在和上单调递增,在上单调递减;当时,若或,则;若,则;在和上单调递增,在上单调递减;综上所述:当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减.19、(1);(2)证明见解析.【解析】(1)求出的值,可求得等差数列的公差,进而可求得数列的通项公式,再由前项和与通项的关系可求得的表达式,可求得,然后对是否满足在时的表达式进行检验,综合可得出数列的通项公式;(2)求得,利用裂项求和法可求得的表达式,利用不等式的性质和数列的单调性可证得所证不等式成立.【小问1详解】解:因为,,所以,因为,,所以,设数列公差为,则,所以,当时,由,可得,所以,所以,因为满足,所以,对任意的,【小问2详解】证明:因为,所以,因为,所以,因为,所以,故数列单调递增,当时,,所以20、(1);(2)或.【解析】(1)求出双曲线的右焦点坐标,可求出的值,即可得出抛物线的标准方程;(2)设点,由抛物线的定义求出的值,代入抛物线的方程可求得的值,即可得出点的坐标.【详解】(1)由双曲线方程可得,,所以,解得.则曲线的右焦点为,所以,.因此,抛物线的标准方程为;(2)设,由抛物线的定义及已知可得,解得.代入抛物线方程可得,解得,所以点的坐标为或.21、(1);(2)或.【解析】(1)根据短轴长求出b,根据M在C上求出a;(2)根据题意设直线l为,与椭圆方程联立得根与系数关系,根据=即可求出m的值.【小问1详解】∵短轴长为2,∴,∴,又∵点在C上,∴,∴,∴椭圆C的标准方程为;【小问2详解】由(1)知,∵当直线l斜率为0时,不符合题意,∴设直线l的方程为:,联立,消x得:,∵,∴设,,则,∵,∴,∴,即,解得,∴直线l的方程为:或.22、(Ⅰ)最大值为,最小值为.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论