河北省保定市曲阳县第一高级中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
河北省保定市曲阳县第一高级中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
河北省保定市曲阳县第一高级中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
河北省保定市曲阳县第一高级中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
河北省保定市曲阳县第一高级中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市曲阳县第一高级中学2025届高二数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列直线中,倾斜角为45°的是()A. B.C. D.2.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+3.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.104.已知是椭圆上的一点,则点到两焦点的距离之和是()A.6 B.9C.14 D.105.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定6.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形7.已知等比数列的首项为1,公比为2,则=()A. B.C. D.8.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.9.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.10.抛物线的准线方程是A.x=1 B.x=-1C. D.11.若“”是“”的充分不必要条件,则实数a的取值范围为A. B.或C. D.12.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点在以,为焦点的椭圆上运动,则的重心的轨迹方程是___________.14.甲、乙两名学生通过某次听力测试的概率分别为和,且是否通过听力测试相互独立,两人同时参加测试,其中有且只有一人能通过的概率是__________15.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;16.已知曲线在点处的切线与曲线相切,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项的和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知椭圆C:过两点(1)求C的方程;(2)定点M坐标为,过C右焦点的直线与C交于P,Q两点,判断是否为定值?若是,求出该定值,若不是,请说明理由19.(12分)已知,(1)当时,求函数的单调递减区间;(2)当时,,求实数a的取值范围20.(12分)已知函数(为自然对数的底数).(1)求函数的单调区间;(2)若函数有且仅有2个零点,求实数的值.21.(12分)如图,在直三棱柱中,,是中点.(1)求点到平面的的距离;(2)求平面与平面夹角的余弦值;22.(10分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小(2)若,,求b.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C2、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B3、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题4、A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A5、B【解析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.6、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C7、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D8、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.9、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B10、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题11、D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.12、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出点和三角形的重心,利用重心坐标公式得到点和三角形的重心坐标的关系,,代入椭圆方程即可求得轨迹方程,再利用,,三点不共线得到.【详解】设,,由,得,即,,因为为的重心,所以,,即,,代入,得,即,因为,,三点不共线,所以,则的重心的轨迹方程是.故答案:.14、##0.5【解析】分两种情况,结合相互独立事件公式即可求解.【详解】记甲,乙通过听力测试的分别为事件,则可得,两人有且仅有一人通过为事件,故所求事件概率为.故答案为:15、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.16、2或10【解析】求出在处的导数,得出切线方程,与联立,利用可求.【详解】令,,则,,可得曲线在点处的切线方程为.联立,得,,解得或.故答案为:2或10.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据,并结合等比数列的定义即可求得答案;(2)结合(1),并通过错位相减法即可求得答案.【小问1详解】当时,,当时,,是以2为首项,2为公比的等比数列,.【小问2详解】,…①…②①-②得,.18、(1);(2)为定值.【解析】(1)根据题意,列出的方程组,求解即可;(2)对直线的斜率是否存在进行讨论,当直线斜率存在时,设出直线的方程,联立椭圆方程,利用韦达定理,转化,求解即可.【小问1详解】因为椭圆过两点,故可得,解得,故椭圆方程为:.【小问2详解】由(1)可得:,故椭圆的右焦点的坐标为;当直线的斜率不存在时,此时直线的方程为:,代入椭圆方程,可得,不妨取,又,故.当直线的斜率存在时,设直线的方程为:,联立椭圆方程,可得:,设坐标为,故可得,则.综上所述,为定值.【点睛】本题考察椭圆方程的求解,以及椭圆中的定值问题;处理问题的关键是合理的利用韦达定理,将目标式进行转化,属中档题.19、(1)(2)【解析】(1)求出函数的导函数,再解导函数的不等式,即可求出函数的单调递减区间;(2)依题意可得当时,当时,显然成立,当时只需,参变分离得到,令,,利用导数说明函数的单调性,即可求出参数的取值范围;【小问1详解】解:当时定义域为,所以,令,解得或,令,解得,所以的单调递减区间为;【小问2详解】解:由,即,即,当时显然成立,当时,只需,即,令,,则,所以在上单调递减,所以,所以,故实数的取值范围为.20、(1)函数的单调递减区间为,单调递增区间为,(2)【解析】(1)利用导数求得的单调区间.(2)利用导数研究的单调性、极值,从而求得的值.【小问1详解】由,得,令,得或;令,得.∴函数的单调递减区间为,单调递增区间为,.【小问2详解】∵,∴.当时,;当时,∴的单调递减区间为,;单调递增区间为.∴的极小值为,极大值为.当时,;当时,.又∵函数有且仅有2个零点,∴实数的值为.21、(1)(2)【解析】(1)以为原点,为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量为,再利用公式计算即可;(2)易得平面的法向量为,设平面与平面的夹角为,再利用计算即可小问1详解】解:(1)以为原点,为轴,为轴,为轴建立空间直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论