版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市平城区第一中学2025届数学高二上期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺2.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为()A. B.C. D.3.已知空间、、、四点共面,且其中任意三点均不共线,设为空间中任意一点,若,则()A.2 B.C.1 D.4.如图,在长方体中,,,则直线和夹角的余弦值为()A. B.C. D.5.数列,则是这个数列的第()A.项 B.项C.项 D.项6.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”8.已知椭圆的离心率为,双曲线的离心率为,则()A. B.C. D.9.过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A. B.C. D.10.已知各项均为正数的等比数列满足,若存在两项,使得,则的最小值为()A.4 B.C. D.911.已知数列中,,(),则等于()A. B.C. D.212.已知且,则下列不等式恒成立的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=4,则|CD|=_____________.14.若曲线在处的切线平行于x轴,则___________.15.已知抛物线的焦点为F,A为抛物线C上一点.以F为圆心,FA为半径的圆交抛物线C的准线于B,D两点,A,F,B三点共线,且,则______16.设双曲线(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求18.(12分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.19.(12分)如图,在四棱锥中,,为的中点,连接.(1)求证:平面;(2)求平面与平面的夹角的余弦值.20.(12分)在中,是的中点,,现将该平行四边形沿对角线折成直二面角,如图:(1)求证:;(2)求二面角的余弦值.21.(12分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分22.(10分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A2、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.3、B【解析】根据空间四点共面的充要条件代入即可解决.【详解】,即整理得由、、、四点共面,且其中任意三点均不共线,可得,解之得故选:B4、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.5、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.6、A【解析】根据直线垂直求出的范围即可得出.【详解】由直线垂直可得,解得或1,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.7、A【解析】由,而,故由独立性检验的意义可知选A8、D【解析】根据给定的方程求出离心率,的表达式,再计算判断作答.【详解】因椭圆的离心率为,则有,因双曲线的离心率为,则有,所以.故选:D9、A【解析】根据题意可表示出渐近线方程,进而可知的斜率,表示出直线方程,求出的坐标进而求得A点坐标,代入双曲线方程整理求得和的关系式,进而求得离心率【详解】:由题意设相应的渐近线:,则根据直线的斜率为,则的方程为,联立双曲线渐近线方程求出,则,,则的中点,把中点坐标代入双曲线方程中,即,整理得,即,求得,即离心率为,故答案为:10、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【详解】因为各项均为正数的等比数列满足,可得,即解得或(舍去)∵,,∴=当且仅当,即m=2,n=4时,等号成立故的最小值等于.故选:C【点睛】方法点睛:本题主要考查等比数列的通项公式和基本不等式的应用,解题的关键是常量代换的技巧,所谓常量代换,就是把一个常数用代数式来代替,如,再把常数6代换成已知中的m+n,即.常量代换是基本不等式里常用的一个技巧,可以优化解题,提高解题效率.11、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.12、C【解析】∵且,∴∴选C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出圆心和半径,由于半径为2,弦|AB|=4,所以可知直线过圆心,从而得,求出,得到直线方程且倾斜角为135°,进而可求出|CD|【详解】圆,圆心(1,2),半径r=2,∵|AB|=4,∴直线过圆心(1,2),∴,∴,∴直线,倾斜角为135°,∵过A,B分别做l的垂线与x轴交于C,D两点,∴.故答案为:4【点睛】此题考查直线与圆的位置关系,考查两直线的位置关系,考查转化思想和计算能力,属于基础题14、【解析】求出导函数得到函数在时的导数,由导数值为0求得a的值【详解】由,得,则,∵曲线在点处的切线平行于x轴,∴,即.故答案为:15、2【解析】求得抛物线的焦点和准线方程,由,,三点共线,推得,由三角形的中位线性质可得到准线的距离,可得的值【详解】抛物线的焦点为,,准线方程为,因为,,三点共线,可得为圆的直径,如图示:设准线交x轴于E,所以,则,由抛物线的定义可得,又是的中点,所以到准线的距离为,故答案为:216、e=2.【解析】先求出直线的方程,利用原点到直线的距离为,,求出的值,进而根据求出离心率【详解】由l过两点(a,0),(0,b),得l的方程为bx+ay-ab=0.由原点到l的距离为c,得=c.将b=代入平方后整理,得162-16·+3=0.解关于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴应舍去e=.故所求离心率e=2.【点睛】本题考查双曲线性质,考查求双曲线的离心率常用的方法即构造出关于的等式,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解】由(1)知,,所以18、(1),(2)【解析】(1)由题意可得,从而可求出,进而可求得的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求得结果【详解】(1)因为数列是公差为2的等差数列,且成等比数列,所以即,解得,所以;(2)由(1)得,所以.19、(1)证明过程见解析;(2).【解析】(1)根据平行四边形的判定定理和性质,结合线面垂直的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】因为为的中点,所以,而,所以四边形是平行四边形,因此,因为,,为的中点,所以,,而,因为,所以,而平面,所以平面;【小问2详解】根据(1),建立如图所示的空间直角坐标系,,于是有:,则平面的法向量为:,设平面的法向量为:,所以,设平面与平面的夹角为,所以.20、(1)证明见解析(2)【解析】(1)先求出BD,通过勾股定理的逆定理得,再由面面垂直的性质得线面垂直,从而得线线垂直;(2)作出二面角,然后再解直角三形即可.【小问1详解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB⊂平面ABD,∴AB⊥平面BCD.又CD⊂平面BCD,∴AB⊥CD.【小问2详解】因为点是的中点,在中,由(1)易知,.过点作垂直的延长线于,再连接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.21、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,设所求圆的圆心为,半径为,得到,利用圆的垂径定理列出方程求得的值,即可求解.【小问1详解】解:由直线和的交点为P,联立方程组,解得,即,因为直线与直线垂直,所以直线的斜率为,所以过点且与直线垂直的直线方程为,即.【小问2详解】解:因为点到直线的距离为,设所求圆的半径为,由圆的的垂径定理得,弦长,解得,所以所求圆的方程为.【小问3详解】解:若选①:直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,设直线l的的斜率为,可得直线的方程为,即,则直线与坐标轴的交点分别为,由,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 规则意识的课程设计
- 环艺课程设计展板
- 蜡染小学课程设计
- 权利转让协议书范本
- 汽车转让协议
- 企业数字化转型升级合作协议
- 信息技术行业软件产品使用许可协议
- 基于物联网的绿色能源运营合作协议
- 互联网营销合作内容免责协议
- 新兴农业模式合作协议书
- 建筑物拆除的拆除工厂考核试卷
- 广东省深圳市2023-2024学年高二上学期期末测试英语试卷(含答案)
- 2024年手术室带教工作计划样本(5篇)
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 人教版一年级数学2024版上册期末测评(提优卷一)(含答案)
- 医疗护理员理论知识考核试题题库及答案
- 湖北省荆州市八县市区2023-2024学年高二上学期1月期末联考数学试题 附答案
- 保密知识培训
- 2024年同等学力申硕英语考试真题
- 2024年人教版八年级历史下册期末考试卷(附答案)
- Python语言基础与应用学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论