版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页浙江省台州温岭市第三中学2025届数学九上开学统考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.2、(4分)若关于x的方程x2-bx+6=0的一根是x=2,则另一根是()A.x=-3 B.x=-2 C.x=2 D.x=33、(4分)如图所示,在中,,则为()A. B. C. D.4、(4分)将点先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A. B. C. D.5、(4分)若a<0,b>0,则化简的结果为()A. B. C. D.6、(4分)已知,为实数,且,,设,,则,的大小关系是().A. B. C. D.无法确定7、(4分)甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h8、(4分)如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列三个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).10、(4分)一次函数y=2x-6的图像与x轴的交点坐标为.11、(4分)计算的结果等于_______.12、(4分)菱形的两条对角线长分别是6和8,则菱形的边长为_____.13、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.三、解答题(本大题共5个小题,共48分)14、(12分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:输入汉字(个)132133134135136137甲组人数(人)101521乙组人数(人)014122(1)请你填写下表中甲班同学的相关数据.组众数中位数平均数()方差()甲组乙组134134.51351.8(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).15、(8分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?16、(8分)如图,四边形ABCD中,AB=AD,CB=CD,AB∥CD.(1)求证:四边形ABCD是菱形.(2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).(3)对角线AC和BD交于点O,∠ADC=120°,AC=8,P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出AP1的取值范围.17、(10分)如图,在等腰梯形ABCD中,AB=DC,点M,N分别是AD,BC的中点,点E,F分别是BM,CM的中点.(1)求证:四边形MENF是菱形;(2)当四边形MENF是正方形时,求证:等腰梯形ABCD的高是底边BC的一半.18、(10分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)与向量相等的向量是__________.20、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.21、(4分)如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)22、(4分)如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.23、(4分)过某矩形的两个相对的顶点作平行线,再沿着平行线剪下两个直角三角形,剩余的图形为如图所示的▱ABCD,AB=4,BC=6,∠ABC=60°,则原来矩形的面积是__.二、解答题(本大题共3个小题,共30分)24、(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.25、(10分)把下列各式分解因式:(1)x(x-y)2-2(y-x)2(2)(x2+4)2-16x226、(12分)某校计划厂家购买A、B两种型号的电脑,已知每台A种型号电脑比每台B种型号电脑多01.万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同;(1)求A、B两种型号电脑单价各为多少万元?(2)学校预计用不多于9.2万元的资金购进20台电脑,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2、D【解析】
把x=2代入方程x2-bx+6=0,求出b,得出方程,再求出方程的解即可.【详解】解:把x=2代入方程x2-bx+6=0得:4-2b+6=0,解得:b=5,即方程为x2-5x+6=0,解得:x=2或3,即方程的另一个根是x=3,故选:D.此题考查解一元二次方程,一元二次方程的解和根与系数的关系,能求出b的值是解题的关键.3、D【解析】
根据直角三角形的两个锐角互余的性质解答.【详解】解:在△ABC中,∠C=90°,则x+2x=90°.解得:x=30°.所以2x=60°,即∠B为60°.故选:D.本题考查了直角三角形的性质,直角三角形的两个锐角互余,由此借助于方程求得答案.4、C【解析】
根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【详解】解:将点P(-2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,
则点Q的坐标为(-2+3,3-4),即(1,-1),
故选:C.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5、B【解析】
根据二次根式的性质化简即可.【详解】解:由于a<0,b>0,∴ab<0,∴原式=|ab|=−ab,故选:B.本题考查二次根式,解题的关键是熟练运用二次根式的性质,属于基础题型.6、C【解析】
对M、N分别求解计算,进行异分母分式加减,然后把ab=1代入计算后直接选取答案【详解】解:∵,∴∵,∴∴M=N故选C本题考查分式的加减法,熟练掌握分式的运算为解题关键7、B【解析】设甲的速度为x千米/小时,则乙的速度为千米/小时,由题意可得,2(x+)>24,解得x>8,所以要保证在2小时以内相遇,则甲的速度要大于8km/h,故选B.8、B【解析】
连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,于是得到结论.【详解】解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,又∵PE⊥BC,PF⊥CD,∴四边形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①③正确;只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;故选:B.本题主要考查了正方形的性质,正确证明△ABP≌△CBP,以及理解P的任意性是解决本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、AF=CE(答案不唯一).【解析】
根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.10、(3,0).【解析】试题分析:把y=0代入y=2x-6得x=3,所以一次函数y=2x-6的图像与x轴的交点坐标为(3,0).考点:一次函数的图像与x轴的交点坐标.11、2【解析】
先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算12、1【解析】
根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=1.故答案为:1.此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用.13、2【解析】
由平行四边形的性质可得AB=CD,AD=BC,AD∥BC,根据角平分线的性质及平行线的性质可证得∠CDE=∠DEC,由此可得EC=DC,再由BE=BC-CE=AD-AB即可求得AE的长.【详解】∵四边形ABCD为平行四边形∴AB=CD,AD=BC,AD∥BC,∴∠DEC=∠ADE,∵DE为∠ADC的平分线,∴∠CDE=∠ADE,∴∠CDE=∠DEC,即EC=DC,∴BE=BC-CE=AD-AB=5-3=2.故答案为:2.本题考查了角平分线的性质以及平行线的性质、平行四边形的性质等知识,证得EC=DC是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.【详解】解:(1)如下表:组众数中位数平均数()方差()甲组1351351351.6乙组134134.51351.8(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人∴乙组成绩更好一些(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.15、(1)证明见解析;(2)CQ=【解析】分析:(1)利用△A1CB1≌△ACB得到CA1=CA,再根据旋转的性质得∠B1CB=∠A1CA=45°,则∠BCA1=45°,于是根据“ASA”判断△CQA1≌△CP1A,所以CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②,先在Rt△AP1P中根据含30度的直角三角形三边的关系得到P1P=AP1=×2=1,然后在Rt△CP1P中利用等腰直角三角形的性质得CP=P1P=1,CP1=PP1=,由(1)得CQ=CP1=.详解:(1)∵△A1CB1≌△ACB,∴CA1=CA.∵图①中的△A1B1C顺时针旋转45°得图②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°.在△CQA1和△CP1A中,∵,∴△CQA1≌△CP1A,∴CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②.在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1.在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心;旋转方向;旋转角度.也考查了等腰直角三角形的性质.16、(1)见解析;(2)见解析;(3).【解析】分析:(1)先证明四边形ABCD是平行四边形,然后证明它是菱形即可.(2)由(1)已知四边形ABCD是菱形,所以当△ABD是直角三角形时,四边形ABCD是正方形.(3)将线段AC顺时针方向旋转60°得到线段CE,并连接AE,点到直线的距离垂线段最短,所以AP1垂直CE时,AP1取最小值,点P1在E点,AP1取最大值,即可求解.详解:证明:(1)AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,∴AD∥BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;(3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE上运动.连接AE,∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,∴AC=CE=AE=8,过点A作于点F,∴.当点P1在点F时,线段AP1最短,此时;.当点P1在点E时,线段AP1最长,此时AP1=8,..点睛:本题主要考查了菱形的判定和正方形的判定,结合题意认真分析是解题的关键.17、见解析【解析】
(1)利用等腰梯形的性质证明,利用全等三角形性质及中点概念,中位线的性质证明四边形的四边相等得结论.(2)连接,利用三线合一证明是等腰梯形的高,再利用正方形与直角三角形的性质可得结论.【详解】(1)四边形为等腰梯形,所以,为中点,.
,
.
为、中点,,,所以:,为的中点,为中点,
∴四边形是菱形.
(2)连结MN,∵BM=CM,BN=CN,∴MN⊥BC,∵AD∥BC,∴MN⊥AD,∴MN是梯形ABCD的高,又∵四边形MENF是正方形,∴△BMC为直角三角形,又∵N是BC的中点,,即等腰梯形ABCD的高是底边BC的一半.
本题考查的是等腰梯形的性质,等腰直角三角形的性质,三角形的全等的判定,菱形的判定,正方形的性质等,掌握以上知识点是解题关键.18、(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)连接AC,由AE=CE得到∠EAC=∠ECA,由AD∥BC得∠DAC=∠ECA,则∠CAE=∠CAD,即AC平分∠DAE;
(2)连接AC、BD交于点O,连接EO,由平行四边形的性质及等腰三角形的性质可知EO为∠AEC的角平分线.试题解析:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
由于向量,所以.【详解】故答案为:此题考查向量的基本运算,解题关键在于掌握运算法则即可.20、2.5【解析】
∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD-AE=4-x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,即CE的长为2.5,故答案为2.5.21、180°﹣n°【解析】
由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.【详解】∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.22、或15【解析】
如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5,
根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.【详解】∵四边形ABCD是矩形,∴AD=BC=3,CD=AB=5,如图1,由折叠得AB=A=5,E=BE,∴,∴,在Rt△中,,∴,解得BE=;如图2,由折叠得AB=A=5,∵CD∥AB,∴∠=∠,∵,∴,∵AE垂直平分,∴BF=AB=5,∴,∵CF∥AB,∴△CEF∽△ABE,∴,∴,∴BE=15,故答案为:或15.此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.23、16或21【解析】
分两种情况,由含30°角的直角三角形的性质求出原来矩形的长和宽,即可得出面积.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC=6,CD=AB=4,分两种情况:①四边形BEDF是原来的矩形,如图1所示:则∠E=∠EBF=90°,∴∠ABE=90°﹣∠ABC=30°,∴AE=AB=2,BE=AE=2,∴DE=AE+AD=8,∴矩形BEDF的面积=BE×DE=2×8=16;②四边形BGDH是原来的矩形,如图2所示:同①得:CH=BC=3,BH=CH=3∴DH=CH+CD=7,∴矩形BGDH的面积=BH×DH=3×7=21;综上所述,原来矩形的面积为16或21;故答案为:16或21.本题考查了矩形的性质、平行四边形的性质、含30°角的直角三角形的性质,熟练掌握矩形的性质和平行四边形的性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780【解析】
(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;(2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;(3)根据众数,平均数的定义即可得到结论;(4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业主和房东简单合同范本
- 基于物联网的二零二四年度智能农业解决方案购销合同
- 2024版房地产经纪咨询费合同
- 2024年度福州市二手房买卖合同全文3篇
- 2024年度工程市场调研居间合同3篇
- 麻醉相关课件
- 工程总承包中的联合体协议
- 个人投资简单的协议书范本
- 2024年度云计算服务合同:企业客户与云服务提供商的长期合作协议
- 2024年度租赁合同:办公场所租赁服务3篇
- 服务器基础知识单选题100道及答案解析
- 2020年EHS体系管理评审汇报
- 孔板流量计完整版本
- 中小学校园食品安全主题班会食刻牢记安全相伴课件
- 2024-2030年中国媒体行业市场发展分析及发展趋势与投资机会研究报告
- 2024年高中学业水平考核美术试题
- 《互联网广告可识别性执法指南》解读与实操
- 中国法制史重点知识
- 血液透析中针头脱出致血液外渗护理不良事件案例分析
- 《马克思主义发展史》题集
- 新《烟草专卖法》应知应会考试题库400题(含答案)
评论
0/150
提交评论