




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华师大版初中数学中考总复习PPT全套精品课件1第10课时一次函数的图象与性质2第10课时┃一次函数的图象与性质考点1一次函数与正比例函数的概念回归教材3第10课时┃一次函数的图象与性质考点2一次函数的图象和性质4第10课时┃一次函数的图象与性质一、三象限二、四象限一、二、三象限一、三、四象限一、二、四象限二、三、四象限5第10课时┃一次函数的图象与性质考点3两条直线的位置关系
k1=k2k1≠k26第10课时┃一次函数的图象与性质考点4由待定系数法求一次函数的解析式待定系数法7第10课时┃一次函数的图象与性质考点5一次函数与一次方程(组)、一元一次不等式(组)8探究一一次函数的图象与性质归类探究第10课时┃一次函数的图象与性质D图10-1
9第10课时┃一次函数的图象与性质
解析∵一次函数y=(m-2)x-1的图象经过第二、三、四象限,∴m-2<0,解得m<2.10第10课时┃一次函数的图象与性质探究二一次函数的图象的平移A11第10课时┃一次函数的图象与性质
解析将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,得到的直线的解析式是:y=-2(x+2)+1+1=-2x-2,即y=-2x-2.12第10课时┃一次函数的图象与性质探究三求一次函数的解析式命题角度:由待定系数法求一次函数的解析式.例3[2012·湘潭]
已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.
解析先根据一次函数y=kx+b(k≠0)的图象过点(0,2)可知b=2,再用k表示出函数图象与x轴的交点,利用三角形的面积公式求解即可.13第10课时┃一次函数的图象与性质
解
14图10-2
第10课时┃一次函数的图象与性质探究四一次函数与一次方程(组),一元一次不等式(组)命题角度:1.利用函数图象求二元一次方程(组)的解;2.利用函数图象解一元一次不等式(组).x=-115第10课时┃一次函数的图象与性质
解析16回归教材教材母题第10课时┃一次函数的图象与性质待定系数法求“已知两点的一次函数的关系式”
17第10课时┃一次函数的图象与性质18中考预测第10课时┃一次函数的图象与性质19第10课时┃一次函数的图象与性质
解
2021第11课时一次函数的应用22第11课时┃一次函数的应用考点一次函数的应用
回归教材23探究一利用一次函数进行方案选择归类探究第11课时┃一次函数的应用24第11课时┃一次函数的应用y乙=0.12xy甲=0.1x+625第11课时┃一次函数的应用
解析
(1)设甲种收费的函数关系式y甲=kx+b,乙种收费的函数关系式是y乙=k1x,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时分别求出x的取值范围就可以得出选择方式.26第11课时┃一次函数的应用27第11课时┃一次函数的应用探究二利用一次函数解决分段函数问题命题角度:1.利用一次函数解决个税收取问题;2.利用一次函数解决水、电、煤气等资源收费问题.28第11课时┃一次函数的应用0.6108180<x≤45029第11课时┃一次函数的应用
解析30第11课时┃一次函数的应用[方法点析]
此类问题多以分段函数的形式出现,正确理解分段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段函数的分界点;(2)针对每一段函数关系,求解相应的函数解析式;(3)利用条件求未知问题.
解
31第11课时┃一次函数的应用探究三利用一次函数解决其他生活实际问题命题角度:函数图象在实际生活中的应用.32第11课时┃一次函数的应用33第11课时┃一次函数的应用
解析34第11课时┃一次函数的应用
解
35第11课时┃一次函数的应用36回归教材教材母题“分段函数”模型应用广第11课时┃一次函数的应用37第11课时┃一次函数的应用38第11课时┃一次函数的应用39中考预测第11课时┃一次函数的应用D4041第12课时反比例函数42第12课时┃反比例函数考点1反比例函数的概念
回归教材43第12课时┃反比例函数考点2反比例函数的图象与性质原点双曲线44第12课时┃反比例函数图12-145第12课时┃反比例函数考点3反比例函数的应用46探究一反比例函数的概念归类探究第12课时┃反比例函数B
解析47第12课时┃反比例函数探究二反比例函数的图象与性质命题角度:反比例函数的图象与性质.D48第12课时┃反比例函数
解析方法一:分别把各点代入反比例函数求出y1,y2,y3的值,再比较出其大小即可.方法二:根据反比例函数的图象和性质比较.49第12课时┃反比例函数探究三与反比例函数的k有关的问题命题角度:反比例函数中k的几何意义.150第12课时┃反比例函数51第12课时┃反比例函数探究四反比例函数的应用命题角度:1.反比例函数在实际生活中的应用;2.反比例函数与一次函数的综合运用.52第12课时┃反比例函数53第12课时┃反比例函数
解析(1)过B点作BD⊥x轴,垂足为D,由B(n,-2)得BD=2,由tan∠BOC=,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A,B两点横坐标与纵坐标的积相等求m的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB的解析式求CO的长,再确定E点坐标.54第12课时┃反比例函数
解
55第12课时┃反比例函数[方法点析]此类一次函数,反比例函数,二元一次方程组,三角形面积等知识的综合运用,其关键是理清解题思路,在直角坐标系中,求三角形或四边形面积时,常常采用分割法,把所求的图形分成几个三角形或四边形,分别求出面积后再相加.56回归教材教材母题反比例函数与一次函数巧结合第12课时┃反比例函数57第12课时┃反比例函数58中考预测第12课时┃反比例函数A59第12课时┃反比例函数60第12课时┃反比例函数
解
6162第13课时二次函数的图象及其性质(一)63第13课时┃二次函数的图象及其性质(一)考点1二次函数的概念
回归教材y=ax2+bx+c64第13课时┃二次函数的图象及其性质(一)考点2二次函数的图象及画法
65第13课时┃二次函数的图象及其性质(一)考点3二次函数的性质
66第13课时┃二次函数的图象及其性质(一)67第13课时┃二次函数的图象及其性质(一)考点4用待定系数法求二次函数的解析式
68探究一二次函数的定义
归类探究第13课时┃二次函数的图象及其性质(一)A69
解析[方法点析]
利用二次函数的定义判定,二次函数中自变量的最高次数是2,且二次项的系数不为0.第13课时┃二次函数的图象及其性质(一)70探究二二次函数的图象与性质命题角度:1.二次函数的图象及画法;2.二次函数的性质.A第13课时┃二次函数的图象及其性质(一)71
解析①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,本说法正确.综上所述,说法正确的只有④,共1个.故选A.第13课时┃二次函数的图象及其性质(一)72第13课时┃二次函数的图象及其性质(一)探究三二次函数的解析式的求法命题角度:1.一般式,顶点式,交点式;2.用待定系数法求二次函数的解析式.73第13课时┃二次函数的图象及其性质(一)
解
74第13课时┃二次函数的图象及其性质(一)75回归教材教材母题一题多解提能力第13课时┃二次函数的图象及其性质(一)76第13课时┃二次函数的图象及其性质(一)77第13课时┃二次函数的图象及其性质(一)78中考预测第13课时┃二次函数的图象及其性质(一)y
=-x2+4x-379第13课时┃二次函数的图象及其性质(一)
解
8081第14课时二次函数的图象及其性质(二)82第14课时┃二次函数的图象及其性质(二)考点1二次函数与一元二次方程的关系没有两个不相等两个相等83第14课时┃二次函数的图象及其性质(二)考点2
二次函数y=ax2+bx+c(a≠0)的图象特征与a,b,c及判别式b2-4ac的符号之间的关系84第14课时┃二次函数的图象及其性质(二)85第14课时┃二次函数的图象及其性质(二)考点3二次函数图象的平移
图14-1[注意]确定抛物线平移后的解析式最好利用顶点式,利用顶点的平移来研究图象的平移.86第14课时┃二次函数的图象及其性质(二)考点4求二次函数的最值
y最大=k
图象顶点(h,k)最小值y最小=k最大值87第14课时┃二次函数的图象及其性质(二)较小值较大值较小值
较大值88探究一二次函数与一元二次方程归类探究第14课时┃二次函数的图象及其性质(二)B89
解析第14课时┃二次函数的图象及其性质(二)90探究二二次函数的图象的平移
命题角度:1.二次函数的图象的平移规律;2.利用平移求二次函数的图象的解析式.D第14课时┃二次函数的图象及其性质(二)
解析抛物线y=(x-1)2+3向左平移1个单位所得直线解析式为y=(x-1+1)2+3,即y=x2+3;再向下平移3个单位为y=x2+3-3,即y=x2.故选D.91第14课时┃二次函数的图象及其性质(二)B
解析92第14课时┃二次函数的图象及其性质(二)93第14课时┃二次函数的图象及其性质(二)探究三二次函数的图象特征与a,b,c之间的关系命题角度:1.二次函数的图象的开口方向,对称轴,顶点坐标,与坐标轴的交点情况与a,b,c的关系;2.图象上的特殊点与a,b,c的关系.C图14-394第14课时┃二次函数的图象及其性质(二)
解析95第14课时┃二次函数的图象及其性质(二)图14-4
C96第14课时┃二次函数的图象及其性质(二)
解析97第14课时┃二次函数的图象及其性质(二)98第14课时┃二次函数的图象及其性质(二)探究四二次函数的图象与性质的综合运用命题角度:二次函数的图象与性质的综合运用.99
解
第14课时┃二次函数的图象及其性质(二)100第14课时┃二次函数的图象及其性质(二)101第14课时┃二次函数的图象及其性质(二)102第三单元函数及其图象103第15课时二次函数的应用104第15课时┃二次函数的应用考点1二次函数的应用
回归教材105考点2建立平面直角坐标系,用二次函数的图象解决实际问题第15课时┃二次函数的应用106探究一利用二次函数解决抛物线形问题归类探究第15课时┃二次函数的应用107
解析第15课时┃二次函数的应用108第15课时┃二次函数的应用解109第15课时┃二次函数的应用110探究二二次函数在营销问题方面的应用命题角度:二次函数在销售问题方面的应用.第15课时┃二次函数的应用111第15课时┃二次函数的应用112
解析第15课时┃二次函数的应用113解第15课时┃二次函数的应用114第15课时┃二次函数的应用[方法点析]
二次函数解决销售问题是我们生活中经常遇到的问题,这类问题通常是根据实际条件建立二次函数关系式,然后利用二次函数的最值或自变量在实际问题中的取值解决利润最大问题.115探究三二次函数在几何图形中的应用命题角度:1.二次函数与三角形、圆等几何知识结合往往是涉及最大面积,最小距离等;2.在写函数解析式时,要注意自变量的取值范围.第15课时┃二次函数的应用116第15课时┃二次函数的应用解117第15课时┃二次函数的应用118第15课时┃二次函数的应用119回归教材教材母题如何定价利润最大第15课时┃二次函数的应用120第15课时┃二次函数的应用[点析]根据问题情景建立函数关系式,然后根据二次函数的最值求最大利润时自变量的值.121中考预测第15课时┃二次函数的应用(1400-50x)122解第15课时┃二次函数的应用123124第16课时几何初步及平行线、相交线125第16课时┃几何初步及平行线、相交线考点1三种基本图形——直线、射线、线段
回归教材长度一线段126第16课时┃几何初步及平行线、相交线考点2角
直角锐角127第16课时┃几何初步及平行线、相交线考点3几何计数128第16课时┃几何初步及平行线、相交线考点4互为余角、互为补角相等相等129第16课时┃几何初步及平行线、相交线考点5邻补角、对顶角130第16课时┃几何初步及平行线、相交线考点6
“三线八角”的概念131第16课时┃几何初步及平行线、相交线考点7平行平行不相交一平行132第16课时┃几何初步及平行线、相交线考点8垂直
垂线段直角垂足一垂线段最短133图16-1探究一线与角的概念和基本性质归类探究第16课时┃几何初步及平行线、相交线C134第16课时┃几何初步及平行线、相交线
解析135图16-2第16课时┃几何初步及平行线、相交线探究二直线的位置关系B136第16课时┃几何初步及平行线、相交线
解析[方法点析]
计算角度问题时,要注意挖掘图形中的隐含条件(三角形内角和、互为余角或补角、平行线的性质、垂直)及角平分线知识的应用.137第16课时┃几何初步及平行线、相交线探究三度、分、秒的计算命题角度:1.互为余角的计算;2.互为补角的计算;3.角度的有关计算.143°55′15.530′138第16课时┃几何初步及平行线、相交线
解析
(1)根据度、分、秒之间的换算关系,进行运算.(2)注意角的度数之间的进率是60而不是10,这是容易出错的地方.(1)∵30′=0.5°,∴15°30′=15.5°.(2)1°=60′,可得0.5°=30′,20.5°=20°30′.(3)180°-36°5′=143°55′.139第16课时┃几何初步及平行线、相交线探究四平行线的性质和判定的应用140第16课时┃几何初步及平行线、相交线
解
141第16课时┃几何初步及平行线、相交线142回归教材第16课时┃几何初步及平行线、相交线教材母题三角尺与直尺构成的特殊角143第16课时┃几何初步及平行线、相交线中考预测C图16-4图16-5D144145第17课时三角形146第17课时┃三角形考点1三角形的分类147第17课时┃三角形考点2三角形中的重要线段钝角内内锐角直角148第17课时┃三角形考点3三角形的中位线一半中点平行149第17课时┃三角形考点4三角形的三边关系小于大于150第17课时┃三角形考点5三角形的内角和定理及推理360°180°不相邻的两个内角不相邻互余151探究一三角形三边的关系
归类探究第17课时┃三角形B152第17课时┃三角形
解析四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选B.153第17课时┃三角形探究二三角形的重要线段的应用C154第17课时┃三角形
解析由题意得,∠AED=180°-∠A-∠ADE=70°.∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.155例3[2012·梧州]
如图17-2,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是(
)A.10°B.12°C.15°D.18°图17-2第17课时┃三角形探究三三角形内角与外角的应用
命题角度:1.三角形内角和定理;2.三角形内角和定理的推论.A156第17课时┃三角形
解析∵AD⊥BC,∠C=36°,∴∠CAD=90°-36°=54°.∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE-∠CAD=64°-54°=10°.157158第1课时实数159第1课时┃实数考点1实数的概念及分类
负整数有理数整数正整数零负分数正分数回归教材160第1课时┃实数负分数零正整数正分数负整数161第1课时┃实数考点2实数的有关概念一一原点正方向单位长度乘积-a162第1课时┃实数距离163第1课时┃实数164第1课时┃实数考点3非负数
≥≥≥165第1课时┃实数考点4实数的运算166第1课时┃实数考点5实数的大小比较
左边大于小于大于小右边167第1课时┃实数考点6比较实数大小的常用方法
>><=>=<<=168探究一实数的概念及分类
归类探究第1课时┃实数B169第1课时┃实数
解析
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数都是有理数,而无限不循环小数是无理数.无理数有:-π,0.1010010001…(相邻两个1之间依次多一个0).共有2个.170第1课时┃实数探究二实数的有关概念
非负数0±10或10171第1课时┃实数
解析172第1课时┃实数173第1课时┃实数探究三科学记数法
命题角度:用科学记数法表示数.
例3
[2013·邵阳]
据邵阳市住房公积金管理会议透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为(
)A.11.2×108元B.1.12×109元C.0.112×1010元D.112×107元B174第1课时┃实数
解析
1亿=108,11.2亿=1.12×109.175第1课时┃实数探究四实数的运算
解
原式=-1+1-2+3=1.176第1课时┃实数177第1课时┃实数探究五实数的大小比较
A178第1课时┃实数
解析
互为相反数的两数所表示的点关于原点对称,所以a,-a所表示的点关于原点对称,故a<1<-a.179第1课时┃实数探究六实数与数轴
180第1课时┃实数C
解析181第1课时┃实数182第1课时┃实数探究七创新应用题
85183第1课时┃实数
解析
第1行的第1列与第2列差个2,第2列与第3列差个3,第3列与第4列差个4,…,第6列与第7列差个7;第2行的第1列与第2列差个3,第2列与第3列差个4,第3列与第4列差个5,…,第5列与第6列差个7;第3行的第1列与第2列差个4,第2列与第3列差个5,第3列与第4列差个6,第4列与第5列差个7;……第7行的第1列与第2列差个8,是30;第2列与第3列差个9,是39;第3列与第4列差个10,是49;第4列与第5列差个11,是60;第5列与第6列差个12,是72;第6列与第7列差个13,是85.184回归教材第1课时┃实数教材母题实数大小比较有窍门185第1课时┃实数186第1课时┃实数中考预测BDπ<187188第2课时整式及因式分解189第2课时┃整式及因式分解考点1整式的概念
和乘积回归教材190第2课时┃整式及因式分解考点2同类项、合并同类项
1.同类项:所含字母________,并且相同字母的指数也________的项叫做同类项,几个常数项也是同类项.2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项,合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.防错提醒:(1)同类项与系数无关,也与字母的排列顺序无关,如-7xy与yx是同类项.(2)只有同类项才能合并,如x2+x3不能合并.相同相同191第2课时┃整式及因式分解考点3整式的运算am-n合并同类项am+namn192第2课时┃整式及因式分解a2±2ab+b2a2-b2193第2课时┃整式及因式分解考点4因式分解的概念因式分解:把一个多项式化为几个__________的形式,像这样的式子变形,叫做多项式的因式分解.注意:(1)因式分解专指多项式的恒等变形;(2)因式分解的结果必须是几个整式的积的形式;(3)因式分解与整式乘法互为逆运算.整式的积194第2课时┃整式及因式分解考点5因式分解的基本方法
(x+p)(x+q)m(a+b+c)(a+b)(a-b)(a-b)2(a+b)2195探究一同类项归类探究第2课时┃整式及因式分解C196第2课时┃整式及因式分解
解析根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,则a=1,b=3.197第2课时┃整式及因式分解探究二整式的运算D198第2课时┃整式及因式分解
解析A.利用幂的乘方运算法则计算得到结果;B.利用同底数幂的乘法法则计算得到结果;C.原式不能合并;D.利用积的乘方运算法则计算得到结果.
解
199第2课时┃整式及因式分解200第2课时┃整式及因式分解探究三因式分解命题角度:1.因式分解的概念;2.提取公因式法因式分解;3.运用公式法因式分解:(1)平方差公式;(2)完全平方公式.例4[2013·恩施州]
把x2y-2y2x+y3分解因式正确的是(
)A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)2C201第2课时┃整式及因式分解
解析首先提取公因式y,再利用完全平方公式进行二次分解即可.x2y-2y2x+y3=y(x2-2yx+y2)=y(x-y)2.202第2课时┃整式及因式分解探究四整式运算与因式分解的应用
命题角度:1.整式的规律性问题;2.利用整式验证公式或等式;3.新定义运算;4.利用因式分解进行计算与化简;5.利用几何图形验证因式分解公式.203第2课时┃整式及因式分解[10(n-1)+5]×[10(n-1)+5]=100n(n-1)+25或5(2n-1)×5(2n-1)=100n(n-1)+25204第2课时┃整式及因式分解
解析根据数字变化规律得出个位是5的数字与本身乘积等于十位数乘十位数字加1再乘100再加25,即[10(n-1)+5]×[10(n-1)+5]=100n(n-1)+25或5(2n-1)×5(2n-1)=100n(n-1)+25.205回归教材教材母题第2课时┃整式及因式分解完全平方公式大变身206第2课时┃整式及因式分解207中考预测第2课时┃整式及因式分解C4mn1356-6208209第3课时分式210第3课时┃分式考点1分式的概念
回归教材211第3课时┃分式考点2分式的基本性质
分母分子212第3课时┃分式考点3分式的运算213第3课时┃分式214探究一分式的有关概念归类探究第3课时┃分式AA215第3课时┃分式
解析(1)∵分式有意义,∴x-1≠0,∴x≠1.(2)分式值为0的条件为x-3=0,x+4≠0,解得x=3.216第3课时┃分式探究二分式的基本性质的运用命题角度:1.利用分式的基本性质进行变形;2.利用分式的基本性质进行约分和通分.A217第3课时┃分式[方法点析]
(1)在应用分式基本性质进行变形时,要注意“都”“同一个”“不等于0”这些字眼的意义,否则容易出现错误.(2)在进行通分和约分时,如果分式的分子或分母是多项式时,则先要将这些多项式进行因式分解.
解析218第3课时┃分式探究三分式的化简与求值命题角度:1.分式的加、减、乘、除、乘方运算法则;2.分式的混合运算及化简求值.
解
219第3课时┃分式220第3课时┃分式探究四分式的创新应用命题角度:1.探究分式中的规律问题;2.有条件的分式化简.2011.5221第3课时┃分式
解析222第3课时┃分式223回归教材教材母题分式化简有高招第3课时┃分式224第3课时┃分式225
解
中考预测m
解析第3课时┃分式226第一单元数与式227第4课时数的开方及二次根式228第4课时┃数的开方及二次根式考点1平方根、算术平方根与立方根立方平方平方回归教材229第4课时┃数的开方及二次根式考点2二次根式的有关概念a≥0230第4课时┃数的开方及二次根式考点3二次根式的性质
≥0a
-a≥0≥0>0≥0231第4课时┃数的开方及二次根式考点4二次根式的运算
≥0≥0≥0>0232第4课时┃数的开方及二次根式考点5把分母中的根号化去
233探究一求平方根、算术平方根与立方根归类探究第4课时┃数的开方及二次根式B
A234第4课时┃数的开方及二次根式
解析
16的平方根是±4,(-2)2的算术平方根是2.[方法点析](1)一个正数的平方根有两个,它们互为相反数;(2)平方根等于本身的数是0,算术平方根等于本身的数是1和0,立方根等于本身的数是1、-1和0;(3)一个数的立方根与它本身同号;(4)对一个式子进行开方运算时,要先将式子化简,再进行开方运算.235第4课时┃数的开方及二次根式探究二二次根式的有关概念命题角度:1.二次根式的概念;2.最简二次根式的概念.D236第4课时┃数的开方及二次根式
解析由题意得x≥0且x-1≠0,解得x≥0且x≠1,故选D.237第4课时┃数的开方及二次根式探究三二次根式的化简与计算命题角度:1.二次根式的性质:两个重要公式,积的算术平方根,商的算术平方根;2.二次根式的加、减、乘、除运算.238第4课时┃数的开方及二次根式
解析解
239第4课时┃数的开方及二次根式解240第4课时┃数的开方及二次根式241第4课时┃数的开方及二次根式探究四二次根式的大小比较
命题角度:1.二次根式的大小比较方法;2.利用计算器进行二次根式的大小比较.
解析先比较3与2的大小.解
242第4课时┃数的开方及二次根式[方法点析]
比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.243第4课时┃数的开方及二次根式探究五
二次根式的大小比较
命题角度:1.二次根式的非负性的意义;2.利用二次根式的非负性进行化简.20
解析244第4课时┃数的开方及二次根式245回归教材教材母题二次根式化简中的整体思想第4课时┃数的开方及二次根式246第4课时┃数的开方及二次根式247中考预测第4课时┃数的开方及二次根式AC248第4课时┃数的开方及二次根式-b249250第5课时一次方程(组)及其应用251第5课时┃一次方程(组)及其应用考点1等式的概念与等式的性质
回归教材252第5课时┃一次方程(组)及其应用考点2方程的概念
等式253第5课时┃一次方程(组)及其应用考点3一元一次方程的解法
1一254第5课时┃一次方程(组)及其应用255第5课时┃一次方程(组)及其应用考点4二元一次方程(组)的有关概念
1两256第5课时┃一次方程(组)及其应用考点5二元一次方程组的解法
257第5课时┃一次方程(组)及其应用考点6一次方程(组)的应用258第5课时┃一次方程(组)及其应用考点7常见的几种方程类型及等量关系259探究一等式的概念及性质归类探究第5课时┃一次方程(组)及其应用260第5课时┃一次方程(组)及其应用
解析2261第5课时┃一次方程(组)及其应用探究二一元一次方程的解法
262第5课时┃一次方程(组)及其应用等式性质2分式的基本性质等式性质2去括号法则或乘法分配律移项等式性质1合并同类项系数化为1263第5课时┃一次方程(组)及其应用探究三二元一次方程(组)的有关概念
命题角度:1.二元一次方程(组)的概念;2.二元一次方程(组)的解的概念.264第5课时┃一次方程(组)及其应用探究四二元一次方程组的解法265第5课时┃一次方程(组)及其应用
解
266第5课时┃一次方程(组)及其应用探究五利用一次方程(组)解决生活实际问题
267第5课时┃一次方程(组)及其应用(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?
解析268第5课时┃一次方程(组)及其应用
解
269回归教材第5课时┃一次方程(组)及其应用教材母题节约用水从我做起270第5课时┃一次方程(组)及其应用271第5课时┃一次方程(组)及其应用中考预测272第5课时┃一次方程(组)及其应用
解
[点评]
本题考查了一元一次方程的应用,属于基础题,解题关键是判断出x的范围,根据等量关系得出方程.273274第6课时一元二次方程及其应用275第6课时┃一元二次方程及其应用考点1一元二次方程的概念及一般形式回归教材
ax2+bx+c=0(a≠0)一2276第6课时┃一元二次方程及其应用考点2一元二次方程的四种解法
277第6课时┃一元二次方程及其应用278第6课时┃一元二次方程及其应用考点3
〈选学〉一元二次方程的根的判别式
没有两个不相等两个相等279第6课时┃一元二次方程及其应用考点4
〈选学〉一元二次方程的根与系数的关系
280第6课时┃一元二次方程及其应用考点5一元二次方程的应用281探究一一元二次方程的有关概念
归类探究第6课时┃一元二次方程及其应用A282第6课时┃一元二次方程及其应用
解析
∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a·12+b·1+5=0,∴a+b=-5,∴2013-a-b=2013-(a+b)=2013-(-5)=2018.283第6课时┃一元二次方程及其应用探究二一元二次方程的解法
284第6课时┃一元二次方程及其应用
解析可用因式分解法或公式法.285第6课时┃一元二次方程及其应用286第6课时┃一元二次方程及其应用探究三(选讲)一元二次方程根的判别式
命题角度:1.判别一元二次方程根的情况;2.求一元二次方程字母系数的取值范围.例3[2013·北京]
已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.287第6课时┃一元二次方程及其应用
解析
(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意的k值.
解
288第6课时┃一元二次方程及其应用289第6课时┃一元二次方程及其应用探究四(选讲)一元二次方程根与系数的关系
命题角度:1.利用根与系数的关系计算两根之和与两根之积;2.利用根与系数的关系求有关两根的代数式的值;3.利用根与系数的关系求方程中未知系数的值.290第6课时┃一元二次方程及其应用
解析(1)确定判别式的范围即可得出结论;(2)根据根与系数的关系表示出x1+x2,x1x2,继而根据题意可得出方程,解出即可.291第6课时┃一元二次方程及其应用探究五一元二次方程的应用命题角度:1.用一元二次方程解决变化率问题;2.用一元二次方程解决商品销售问题.292第6课时┃一元二次方程及其应用
解析根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出方程,解出即可.293回归教材教材母题第6课时┃一元二次方程及其应用变化率问题巧把握294第6课时┃一元二次方程及其应用295中考预测第6课时┃一元二次方程及其应用3000296第6课时┃一元二次方程及其应用
解
297298第7课时分式方程及其应用299第7课时┃分式方程及其应用考点1分式方程零未知数零300第7课时┃分式方程及其应用考点2分式方程的解法
公分母301第7课时┃分式方程及其应用考点3分式方程的应用302探究一分式方程的概念
归类探究第7课时┃分式方程及其应用-8
解析分式方程去分母,得2(x-1)=-m,将x=5代入,得m=-8.303第7课时┃分式方程及其应用探究二分式方程的解法
命题角度:1.去分母法;2.换元法.
解
304第7课时┃分式方程及其应用[方法点析]
解分式方程常见的误区:(1)忘记验根;(2)去分母时漏乘不含分母的项;(3)去分母时,没有注意符号的变化.305第7课时┃分式方程及其应用探究三分式方程的应用命题角度:1.利用分式方程解决生活实际问题;2.注意分式方程要对方程和实际意义双检验.306第7课时┃分式方程及其应用
解
307第二单元方程(组)与不等式(组)308第8课时一元一次不等式(组)及其应用309第8课时┃一元一次不等式(组)及其应用考点1不等式回归教材集合310第8课时┃一元一次不等式(组)及其应用考点2一元一次不等式311第8课时┃一元一次不等式(组)及其应用考点3一元一次不等式组312第8课时┃一元一次不等式(组)及其应用考点4利用不等式(组)解决日常生活中的实际问题313探究一不等式的概念及性质归类探究第8课时┃一元一次不等式(组)及其应用C图8-1314第8课时┃一元一次不等式(组)及其应用[方法点析](1)运用不等式的性质时,应注意不等式的两边同时乘或者除以一个负数,不等式的方向要改变.(2)生活中的跷跷板、天平等问题,常借助不等式(组)来求解,注意数与形的有机结合.
解析315第8课时┃一元一次不等式(组)及其应用探究二一元一次不等式命题角度:1.一元一次不等式的概念;2.一元一次不等式的解法.
解析首先两边同时乘6去分母,再利用乘法分配律去括号、移项、合并同类项,最后把x的系数化为1即可.316第8课时┃一元一次不等式(组)及其应用解
317第8课时┃一元一次不等式(组)及其应用探究三一元一次不等式组命题角度:1.一元一次不等式组的概念和解集;2.一元一次不等式组的解法.318第8课时┃一元一次不等式(组)及其应用解319第8课时┃一元一次不等式(组)及其应用探究四与不等式(组)的解集有关的问题命题角度:1.求不等式组的整数解;2.根据解的情况求相关字母的值.C320第8课时┃一元一次不等式(组)及其应用
解析[方法点析]已知不等式组有解或给定解集求字母(或有关字母代数式)的值,一般先求出已知不等式(组)的解集(用所求有关字母的式子表示),再结合有解或给定的解集,得出等量关系或者不等关系.321第8课时┃一元一次不等式(组)及其应用探究五一元一次不等式(组)的应用命题角度:1.利用一元一次不等式(组)解决商品销售问题;2.通过列不等式(组)解决门票的销售、原料的加工等方面的问题;3.利用不等关系确定取值范围,讨论方案的可行性;4.利用不等关系讨论哪种方案更合算.322第8课时┃一元一次不等式(组)及其应用323第8课时┃一元一次不等式(组)及其应用324第8课时┃一元一次不等式(组)及其应用解325第8课时┃一元一次不等式(组)及其应用326回归教材教材母题“分配”中的不等关系第8课时┃一元一次不等式(组)及其应用327中考预测第8课时┃一元一次不等式(组)及其应用328第8课时┃一元一次不等式(组)及其应用解329330第9课时平面直角坐标系与函数331第9课时┃平面直角坐标系与函数考点1平面直角坐标系回归教材x=0,y为任意实数一一y=0,x为任意实数332第9课时┃平面直角坐标系与函数考点2平面直角坐标系内点的坐标特征互为相反数相等333第9课时┃平面直角坐标系与函数考点3点到坐标轴的距离横坐标的绝对值纵坐标的绝对值334第9课时┃平面直角坐标系与函数考点4平面直角坐标系中的平移与对称点的坐标(x+a,y)(x-a,y)(x,y+b)(x,y-b)(x,-y)(-x,y)(-x,-y)335第9课时┃平面直角坐标系与函数考点5函数的有关概念变化不变336第9课时┃平面直角坐标系与函数解析式列表图象列表描点连线337探究一坐标平面内点的坐标特征归类探究第9课时┃平面直角坐标系与函数m>2338第9课时┃平面直角坐标系与函数
解析339第9课时┃平面直角坐标系与函数探究二关于x轴,y轴及原点对称的点的坐标特征
D340第9课时┃平面直角坐标系与函数
解析341第9课时┃平面直角坐标系与函数探究三坐标系中的图形的平移与旋转
命题角度:1.坐标系中的图形平移的坐标变化与作图;2.坐标系中的图形旋转的坐标变化与作图.C342第9课时┃平面直角坐标系与函数
解析
∵A点坐标为(2,4),A1(-2,1),∴点P(2.4,2)平移后的对应点P1为(-1.6,-1).∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为(1.6,1).343第9课时┃平面直角坐标系与函数探究四函数的概念及函数自变量的取值范围D
解析344第9课时┃平面直角坐标系与函数探究五函数图象345第9课时┃平面直角坐标系与函数
解析
本题考查一次函数的图象分析,难度中等.由题意,轮船先从万州逆水航行到朝天门,速度小于静水速度,图象平缓一些,轮船距万州的距离逐渐增大,停留一段时间,距离没有变化,图象平行于横轴,又从朝天门顺水航行返回万州,轮船距万州的距离逐渐减小,速度大于静水速度,图象陡一些,因此图象分为三段,平缓—平—陡,故选C.C图9-2346第9课时┃平面直角坐标系与函数347回归教材第9课时┃平面直角坐标系与函数教材母题贴近生活的函数图象
图9-3348第9课时┃平面直角坐标系与函数349第9课时┃平面直角坐标系与函数中考预测图9-4A350第9课时┃平面直角坐标系与函数
解析时间x=0时,童童还在家里,所以图象必过原点;匀速步行前往,说明y逐步变大,是正比例函数;等轻轨车,x变化,而y不变化,图象是水平线段;乘轻轨车匀速前往奥体中心,速度比步行时大,在相同时间内,函数值变化量比步行时大,所以图象是比步行时k值大的一次函数,这样,就基本可以确定答案为A.351352第18课时全等三角形353第18课时┃全等三角形考点1全等图形及全等三角形回归教材全等图形354第18课时┃全等三角形考点2全等三角形的性质相等相等相等相等相等355第18课时┃全等三角形考点3全等三角形的判定356第18课时┃全等三角形357第18课时┃全等三角形考点4利用“尺规”作三角形的类型
358第18课时┃全等三角形考点5角平分线的性质平分线距离359探究一全等三角形性质与判定的综合应用归类探究第18课时┃全等三角形图18-1360第18课时┃全等三角形
解析
根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.361第18课时┃全等三角形362第18课时┃全等三角形探究二全等三角形开放性问题命题角度:1.三角形全等的条件开放性问题;2.三角形全等的结论开放性问题.图18-2DE=DF
363第18课时┃全等三角形
解析
由已知可证∠EDC=∠BDF,又DC=DB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF或(CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB).364第18课时┃全等三角形[方法点析]全等三角形开放试题,常见的类型有条件开放型、结论开放型及策略开放型三种.注意挖掘题目中隐含的条件,例如公共边、公共角、对顶角等.365第18课时┃全等三角形探究三利用全等三角形设计测量方案命题角度:利用全等三角形的性质与判定解决实际问题.图18-3B
解析366第18课时┃全等三角形探究四角平分线命题角度:1.角平分线的性质;2.角平分线的判定.图18-4367第18课时┃全等三角形
解析
(1)根据角平分线性质得出CD=DE,代入求出即可;(2)证Rt△ACD≌Rt△AED,得出S△ACD=S△AED,求出△ACD的面积即可.368回归教材教材母题“生长图形”的全等第18课时┃全等三角形图18-5369第18课时┃全等三角形370图18-6中考预测第18课时┃全等三角形A371第18课时┃全等三角形
解析372373第19课时等腰三角形374第19课时┃等腰三角形考点1等腰三角形的概念与性质回归教材两边1等边对等角中线375第19课时┃等腰三角形376第19课时┃等腰三角形考点2等腰三角形的判定等角对等边377第19课时┃等腰三角形考点3等边三角形
3相等60°378第19课时┃等腰三角形考点4线段的垂直平分线垂直平分线相等379探究一等腰三角形的性质的运用归类探究第19课时┃等腰三角形图19-1380第19课时┃等腰三角形
解析根据等腰三角形三线合一,确定AD⊥BC.又因为EF⊥AB,然后根据角平分线上的点到角的两边的距离相等可证明结论.证明
381第19课时┃等腰三角形探究二等腰三角形的判定命题角度:等腰三角形的判定.图19-2382第19课时┃等腰三角形
解析(1)利用△BDC≌△CEB
证明∠DCB=∠EBC;(2)连接AO,通过HL证明△ADO≌△AEO,从而得到∠DAO=∠EAO,利用角平分线上的点到角两边的距离相等,证明结论.383第19课时┃等腰三角形解
384第19课时┃等腰三角形385第19课时┃等腰三角形探究三等腰三角形的多解问题命题角度:1.遇到等腰三角形的问题时,注意边有腰与底边之分,角有底角和顶角之分;2.遇到等腰三角形的高线问题要考虑高在形内和形外两种情况.C386第19课时┃等腰三角形
解析因为已知长度为4和8两边,没有明确哪条边是底边哪条边是腰,所以有两种情况,需要分类讨论.①当4为底时,其他两边长都为8,长为4、8、8的三条线段可以构成三角形,周长为20;②当4为腰时,其他两边长分别为4和8,∵4+4=8,∴不能构成三角形,故舍去.∴答案只有20.387第19课时┃等腰三角形探究四等边三角形的判定与性质命题角度:等边三角形的判定与性质的综合.图19-3388第19课时┃等腰三角形
解析(1)欲证∠ABE=∠CAD,可以通过证明△ABE≌△CAD得出;(2)欲证PB=2PH,因为BH⊥AD于点H,在Rt△PBH中根据含30°的直角三角形的性质由∠BPH=60°即可得到答案.证明
389第19课时┃等腰三角形[方法点析]等边三角形中隐含着三边相等和三个角都是60°等条件,所以要充分利用这些隐含条件,证明全等或者构造全等.390第19课时┃等腰三角形探究五等腰三角形的创新应用命题角度:等腰三角形性质“等边对等角”与“等腰三角形的三线合一”的运用.图19-4391第19课时┃等腰三角形
解析先由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°,再取∠BPA=BAP=60°,所以PB=AB=PC=AC,从而根据等腰三角形的定义得出△PAB、△PBC、△PAC都是等腰三角形.392第19课时┃等腰三角形
解
393回归教材教材母题等腰三角形与一次函数巧结合第19课时┃等腰三角形394第19课时┃等腰三角形395中考预测第19课时┃等腰三角形50°或80°396397第20课时直角三角形与勾股定理398第20课时┃直角三角形与勾股定理考点1直角三角形的概念、性质与判定回归教材直角斜边的一半斜边的一半399第20课时┃直角三角形与勾股定理考点2勾股定理及逆定理400第20课时┃直角三角形与勾股定理考点3互逆命题、互逆定理及其关系逆定理原命题逆命题401第20课时┃直角三角形与勾股定理考点4命题、定义、定理、公理
定理真命题假命题条件结论公理证明402图20-1探究一直角三角形性质归类探究第20课时┃直角三角形与勾股定理10403
解析第20课时┃直角三角形与勾股定理404图20-2探究二利用勾股定理求线段的长度
命题角度:1.利用勾股定理求线段的长度;2.利用勾股定理解决折叠问题.D第20课时┃直角三角形与勾股定理405第20课时┃直角三角形与勾股定理
解析过点C作CD⊥AD,∴CD=3cm.在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6(cm).又图中三角板是有45°角的三角板,∴AB=AC=6cm,∴BC2=AB2+AC2=62+62=72,∴BC=6cm,故选D.406第20课时┃直角三角形与勾股定理探究三利用勾股定理解决生活中的实际问题命题角度:1.求最短路线问题;2.求有关长度问题.图20-3B407第20课时┃直角三角形与勾股定理
解析408第20课时┃直角三角形与勾股定理409第20课时┃直角三角形与勾股定理探究四勾股定理逆定理的应用
命题角度:勾股定理逆定理的应用.D410第20课时┃直角三角形与勾股定理
解析411第20课时┃直角三角形与勾股定理412回归教材教材母题巧用勾股定理探求面积关系第20课时┃直角三角形与勾股定理图20-4413第20课时┃直角三角形与勾股定理中考预测图20-5414第20课时┃直角三角形与勾股定理
解析415第20课时┃直角三角形与勾股定理图20-6416417第21课时相似三角形及其应用418第21课时┃相似三角形及其应用考点1相似图形的有关概念回归教材419第21课时┃相似三角形及其应用考点2比例线段0.618两420第21课时┃相似三角形及其应用考点3相似三角形的判定
相等相似比夹角421第21课时┃相似三角形及其应用考点4相似三角形的性质
422第21课时┃相似三角形及其应用考点5位似k或-k相似比一平行423第21课时┃相似三角形及其应用考点6相似三角形的性质
424探究一比例线段归类探究第21课时┃相似三角形及其应用A425
解析第21课时┃相似三角形及其应用426探究二相似三角形的性质及其应用命题角度:1.利用相似三角形性质求角的度数或线段的长度;2.利用相似三角形性质探求比值关系.第21课时┃相似三角形及其应用427解
第21课时┃相似三角形及其应用
解析428第21课时┃相似三角形及其应用
解析429第21课时┃相似三角形及其应用解
430第21课时┃相似三角形及其应用探究三三角形相似的判定方法及其应用命题角度:1.利用两个角判定三角形相似;2.利用两边及夹角判定三角形相似;3.利用三边判定三角形相似.431第21课时┃相似三角形及其应用解
432第21课时┃相似三角形及其应用433第21课时┃相似三角形及其应用探究四位似命题角度:1.位似图形及位似中心定义;2.位似图形的性质应用;3.利用位似变换在网格纸里作图.D434第21课时┃
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025煤炭购销合同2
- 井队员工合同样本
- 铁路护栏搬运方案范本
- 修补水沟合同样本
- 农村改造项目合同样本
- 公路牌安装合同样本
- 万科咨询合同样本
- 出售自用冷库合同样本
- 冲压配件订购合同样本
- 代理办证机构合同样本
- 2024年新人教版六年级数学上册《教材练习2练习二 附答案》教学课件
- 【核心素养目标】六年级科学下册(苏教版)4.13 洁净的水域(教案)
- 设备吊装作业施工方案
- 小学语文“的、地、得”专项练习(附答案)
- 2024至2030年中国去中心化标识符(DID)市场现状研究分析与发展前景预测报告
- 《建筑施工测量标准》JGJT408-2017
- 2024-2030年中国社区医院行业市场发展分析及前景趋势与投资研究报告
- 2024年四川省成都市郫都区五年级数学第二学期期末学业质量监测模拟试题含解析
- 黑龙江省齐齐哈尔市2024年中考数学试卷【附真题答案】
- 脱硫技术方案钠碱法脱硫
- 2024年广东省中考生物试卷附答案
评论
0/150
提交评论