高考数学(理)一轮课时达标40空间点直线平面之间的位置关系_第1页
高考数学(理)一轮课时达标40空间点直线平面之间的位置关系_第2页
高考数学(理)一轮课时达标40空间点直线平面之间的位置关系_第3页
高考数学(理)一轮课时达标40空间点直线平面之间的位置关系_第4页
高考数学(理)一轮课时达标40空间点直线平面之间的位置关系_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时达标第40讲[解密考纲]考查点、线、面的位罝关系常以选择题或填空题的形式出现.一、选择题1.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的(C)A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件解析直线a,b平行时,由“l⊥a,l⊥b”⇒/“l⊥α”;“l⊥α”⇒“l⊥a,l⊥b”,所以“l⊥a,l⊥b”是“l⊥α”的必要不充分条件.2.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是(A.A,M,O三点共线 B.A,M,O,A1不共面C.A,M,C,O不共面 D.B,B1,O,M共面解析连接A1C1,AC,则A1C1∥∴A1,C1,C,A四点共面.∴A1C⊂平面ACC1A∵M∈A1C,∴M∈平面ACC1A又M∈平面AB1D1,∴M为平面ACC1A1与AB1D1的公共点同理O,A为平面ACC1A1与平面AB1D1的公共点∴A,M,O三点共线.3.正方体A1C中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是(AA.相交 B.异面C.平行 D.垂直解析如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.4.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是(D)A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.5.如图,直三棱柱ABC-A1B1C1中,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC1=1,则BD1与AF1所成角的余弦值为(A.eq\f(\r(30),10) B.eq\f(1,2)C.eq\f(\r(30),15) D.eq\f(\r(15),10)解析取BC的中点E,连接EF1,EA,则可知∠EF1A为BD1与AF1所成的角,在△AEF1中,可求得F1E=eq\f(\r(6),2),AF1=eq\f(\r(5),2),AE=eq\f(\r(5),2),由余弦定理得,cos∠EF1A=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))2,2×\f(\r(6),2)×\f(\r(5),2))=eq\f(\r(30),10),故选A.6.如图,在正方体ABCD-A1B1C1D1中,点M,N分别在AB1,BC1上,且AM=eq\f(1,3)AB1,BN=eq\f(1,3)BC1.给出下列结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④B1D1⊥MN.其中正确结论的个数是(B)A.1 B.2C.3 D.4解析在BB1上取一点P,使BP=eq\f(1,3)BB1,连接PN,PM.∵点M,N分别在AB1,BC1上,且AM=eq\f(1,3)AB1,BN=eq\f(1,3)BC1,∴PN∥B1C1,PM∥A1B1.又∵PN∩PM=P,B1C1∩A1B1=B1,∴平面PMN∥平面A1B1C1D1.∵MN⊂平面PMN,∴MN∥平面A1B1C1D1.又∵AA1⊥平面PMN,∴AA1⊥MN.故①③正确.分别作MM1∥BB1,NN1∥CC1,交A1B1,B1C1于点M1,N1,连接M1N1,则M1N1不平行于A1C1,∴MN与A1C1不平行.又∵A1C1⊥B1D1,∴B1D1与MN不垂直,故②④不正确.∴正确结论的个数是2,故选B.二、填空题7.下列如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形是__①②③__.解析在④图中,可证Q点所在棱与平面PRS平行,因此,P,Q,R,S四点不共面.可证①中四边形PQRS为梯形;③中可证四边形PQRS为平行四边形;②中如图所示,取A1A与BC的中点为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形8.四棱锥P-ABCD的顶点P在底面ABCD上的投影恰好是A,其三视图如图所示,其中正视图与侧视图都是腰长为a的等腰三角形,则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有__6__对.解析由题意可得PA⊥BC,PA⊥CD,AB⊥PD,BD⊥PA,BD⊥PC,AD⊥PB,即互相垂直的异面直线共有6对.9.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线MN与AC所成的角为60°.其中正确的结论为__③④__(填所有正确结论的序号).解析AM与CC1是异面直线,AM与BN是异面直线,BN与MB1为异面直线.因为D1C∥MN,所以直线MN与AC所成的角就是D1C与AC所成的角,为三、解答题10.如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱CD,CC1的中点,求异面直线A1M与DN解析如图,连接D1M,可证D1M⊥又∵A1D1⊥DN,A1D1,MD1⊂平面A1MD1,A1D1∩MD1=D1,∴DN⊥平面A1MD1,∴DN⊥A1M即异面直线A1M与DN所成的夹角为9011.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BCeq\f(1,2)AD,BEeq\f(1,2)FA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形.(2)C,D,F,E四点是否共面?为什么?解析(1)证明:由已知FG=GA,FH=HD,可得GHeq\f(1,2)AD.又BCeq\f(1,2)AD,∴GHBC.∴四边形BCHG为平行四边形.(2)由BEeq\f(1,2)AF,G为FA的中点知,BEFG,∴四边形BEFG为平行四边形.∴EF∥BG.由(1)知BG∥CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.12.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.(1)求证:AE与PB是异面直线;(2)求异面直线AE和PB所成角的余弦值;(3)求三棱锥A-EBC的体积.解析(1)证明:假设AE与PB共面,设此平面为α.因为A∈α,B∈α,E∈α,所以平面α即为平面ABE,所以P∈平面ABE,这与P∉平面ABE矛盾,所以AE与PB是异面直线.(2)取BC的中点F,连接EF,AF,则EF∥PB,所以∠AEF或其补角就是异面直线AE和PB所成的角,因为∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,所以AF=eq\r(3),AE=eq\r(2),EF=eq\r(2),由余弦定理得cos∠AEF=eq\f(2+2-3,2×\r(2)×\r(2))=eq\f(1,4),所以异面直线AE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论