云南省昆明市官渡区2024-2025学年数学九上开学检测模拟试题【含答案】_第1页
云南省昆明市官渡区2024-2025学年数学九上开学检测模拟试题【含答案】_第2页
云南省昆明市官渡区2024-2025学年数学九上开学检测模拟试题【含答案】_第3页
云南省昆明市官渡区2024-2025学年数学九上开学检测模拟试题【含答案】_第4页
云南省昆明市官渡区2024-2025学年数学九上开学检测模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页云南省昆明市官渡区2024-2025学年数学九上开学检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算错误的是()A.=2 B.=3 C.÷=3 D.=1﹣=2、(4分)函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、(4分)已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.4、(4分)已知是一元二次方程的一个实数根,则的取值范围为()A. B. C. D.5、(4分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)6、(4分)中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-107、(4分)《九章算术》中的“折竹抵地”问题:一根竹子高丈(丈尺),折断后竹子顶端落在离竹子底端尺处,折断处离地面的高度是多少?()A. B. C. D.8、(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分,=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图甲,在所给方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在格点处)请将图乙中的▱ABCD分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.10、(4分)关于t的分式方程=1的解为负数,则m的取值范围是______.11、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.12、(4分)如图,点B、C分别在直线y=2x和直线y=kx上,A、D是x轴上两点,若四边形ABCD为矩形,且AB:AD=1:2,则k的值是_____.13、(4分)在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.三、解答题(本大题共5个小题,共48分)14、(12分)(1)因式分解:2a3﹣8a2+8a;(2)解不等式组,并把解集在数轴上表示出来.15、(8分)在RtΔABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF//BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.16、(8分)先化简,再求值,其中.17、(10分)如图,已知分别为平行四边形的边上的点,且.(1)求证:四边形是平行四边形;(2)当,且四边形是菱形,求的长.18、(10分)如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,(1)当∠ADE=15°时,求∠DGC的度数;(2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;(3)如图2,当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论。B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.20、(4分)在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.21、(4分)一组数据:3,0,,3,,1.这组数据的众数是_____________.22、(4分)如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.23、(4分)在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,,的大小关系是.(用“<”号连接)二、解答题(本大题共3个小题,共30分)24、(8分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5或8.25 D.4.5或8.525、(10分)因式分解:(1)a(m﹣1)+b(1﹣m).(1)(m1+4)1﹣16m1.26、(12分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】分析:根据二次根式的化简及计算法则即可得出答案.详解:A、=2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.2、B【解析】

根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.3、D【解析】

利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.4、B【解析】

设u=,利用求根公式得到关于u的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于1即可得到ab≤.【详解】因为方程有实数解,故b2-4ac≥1.

由题意有:或,设u=,

则有2au2-u+b=1或2au2+u+b=1,(a≠1),

因为以上关于u的两个一元二次方程有实数解,

所以两个方程的判别式都大于或等于1,即得到1-8ab≥1,

所以ab≤.

故选B.本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)的求根公式:x=(b2-4ac≥1).5、C【解析】

过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.6、C【解析】

绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.7、A【解析】

根据题意画出图形,设折断处离地面的高度为x,则AB=10-x,AC=x,BC=6,进而根据勾股定理建立方程求解即可.【详解】根据题意可得如下图形:设折断处A离地面的高度为x,则AB=10-x,AC=x,BC=6,∴,解得:,故选:A.本题主要考查了勾股定理的运用,熟练掌握相关公式是解题关键.8、B【解析】

∵S甲2=245,S乙2=190,∴S甲2S乙2∴成绩较为整齐的是乙班.故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、详见解析【解析】

直接利用网格结合全等三角形的判定方法得出答案.【详解】解:如图所示:③与④全等;②与⑥全等;⑤与①全等.此题主要考查了平行四边形的性质以及全等三角形的判定,正确应用网格是解题关键.10、m<1【解析】

分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.【详解】去分母得:m-5=t-2,解得:t=m-1,由分式方程的解为负数,得到m-1<0,且m-1≠2,解得:m<1,故答案为:m<1.此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.11、0.8【解析】

根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.【详解】∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE+AD=AE,解得:DE=EF=,故正方形的面积是=,故答案为:0.8本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.12、【解析】

根据矩形的性质可设点A的坐标为(a,0),再根据点B、C分别在直线y=2x和直线y=kx上,可得点B、C、D的坐标,再由AB:AD=1:2,求得k的值即可.【详解】解:∵四边形ABCD为矩形,∴设点A的坐标为(a,0)(a>0),则点B的坐标为(a,2a),点C的坐标为(a,2a),点D的坐标为(a,0),∴AB=2a,AD=(﹣1)a.∵AB:AD=1:2,∴﹣1=2×2,∴k=.故答案为:.一次函数在几何图形中的实际应用是本题的考点,熟练掌握矩形的性质是解题的关键.13、1【解析】如图1,当点D与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,∵5-1=1,∴点A′在BC边上可移动的最大距离为1.三、解答题(本大题共5个小题,共48分)14、(1);(2)1≤x<4,见解析【解析】

(1)直接提取公因式2a,进而利用完全平方公式分解因式得出答案;(2)分别解不等式进而得出不等式组的解集,在数轴上表示即可.【详解】解:(1)原式=,故答案为:;(2)由题意知,解不等式:,得:x≥1,解不等式:,去分母得:,移项得:,解得:x<4,∴不等式组的解集为:1≤x<4,故答案为:1≤x<4,在数轴上表示解集如下所示:.本题考查了因式分解、一元一次不等式组的解法,熟练掌握因式分解的方法及一元一次不等式的解法是解决本题的关键.15、(1)见解析;(2)见解析【解析】

(1)根据已知条件易证ΔAFE≅ΔDBE,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得AF=CD,利用一组对边平行且相等的四边形为平行四边形,证得四边形ADCF是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得AD=12BC=DC,由一组邻边相等的平行四边形为菱形即可判定四边形【详解】(1)证明:如图,∵AF//BC,∴∠AFE=∠DBE,∵ΔABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD,在ΔAFE和ΔDBE中,∠AFE=∠DBE∠FEA=∠BED∴ΔAFE≅ΔDBE;∴AF=BD.(2)由(1)知,AF=BD∵BD=CD,∴AF=CD,∵AF//BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=1∴四边形ADCF是菱形.本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.16、x;2019.【解析】

直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】原式,当时,原式.此题主要考查了分式的化简求值,正确化简分式是解题关键.17、(1)详见解析;(2)10【解析】

(1)首先由已知证明AM∥NC,BN=DM,推出四边形AMCN是平行四边形.(2)由已知先证明AN=BN,即BN=AN=CN,从而求出BN的长.【详解】(1)证明:四边形是平行四边形,又.即,,四边形是平行四边形;(2)四边形是菱形,,又,即,,,.此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.18、(1)∠DGC=45°;(2)∠DGC=45°不会变化;(3)四边形AGFM是正方形【解析】

(1)根据对称性及正方形性质可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度数;(2)由(1)知△DFC为等腰三角形,得出DF=DC,求出∠DFC=45º+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45º;(3)证明FG=MF=MA=AG,∠AGF=90º,即可得出结论.【详解】(1)△FDE与ADE关于DE对称∴△FDE≌△ADE∴∠FDE=∠ADE=15º,AD=FD∴∠ADF=2∠FDE=30º∵ABCD为正方形∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90º∴∠FDC=∠ADC-∠ADF=60º∴△DFC为等边三角形∴∠DFC=60º∵∠DFC为△DGF外角∴∠DFC=∠FDE+∠DGC∴∠DGC=∠DFC-∠FDE=60-15º=45º(2)不变.证明:由(1)知△DFC为等腰三角形,DF=DC∴∠DFC=∠DCF=(180º-∠CDF)=90º-∠CDF①∵∠CDF=90º-∠ADF=90º-2∠EDF②将②代入①得∠DFC=45º+∠EDF∵∠DFC=∠DGC+∠EDF∴∠DGC=45º(3)四边形AMFG为正方形.证明:∵M为Rt△ADE中斜边DE的中点∴AM=DE∵M为Rt△FED中斜边DE的中点∴FM=DE=AM=MD由(1)知△AED≌△FED∴AD=DF,∠ADG=∠FDG△ADG与△FDG中,AD=DF,∠ADG=∠FDG,DG=DG∴△ADG≌△FDG,由(2)知∠DGC=45º∴∠DGA=∠DGF=45º,AG=FG,∠AGF=∠DGA+∠DGF=90º∵DB为正方形对角线,∴∠ADB=∠45º,∵∠ADG=∠GDF=∠ADB=22.5º∵DM=FM∴∠GDF=∠MFD=22.5º∵∠GMF=∠GDF+∠MFD=45º∴∠GMF=∠DGF=45º∴MF=FG∴FG=MF=MA=AG,∠AGF=90º∴四边形AMFG为正方形。本题主要考查了正方形的性质与判定.解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、②③④【解析】分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;故答案为②③.点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.20、1或2或4【解析】

如图1:当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=10°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=10°,∴△PBC是等边三角形,∴CP=BC=1;如图3:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°﹣30°=30°,∴PC=PB,∵BC=1,∴AB=3,∴PC=PB===2如图4:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°+30°=90°,∴PC=BC÷cos30°=4.故答案为1或2或4.考点:解直角三角形21、2【解析】

根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】解:数据:2,0,,2,,1中,2出现的次数最多,所以这组数据的众数是2.故答案为:2.本题考查了众数的定义,属于基础概念题型,熟知众数的概念是关键.22、1【解析】

由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.【详解】解:∵,,根据勾股定理得,∵四边形是平行四边形,,∴当取最小值时,线段最短,即时最短,是的中位线,,,故答案为:1.本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.23、【解析】

根据反比例函数图象上点的坐标特征解答即可;【详解】解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,∵点A(,)在反比例函数图象上,<0,∴>0,∵B(,)、C(,)在反比例函数图象上,0<<,∴,∴,故答案为:.本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.二、解答题(本大题共3个小题,共30分)24、D【解析】

根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【详解】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.25、(1)(m﹣1)(a﹣b);(1)(m+1)1(m﹣1)1.【解析】

(1)直接提取公因式(m+1),进而得穿答案:(1)利用平方差公式进行因式分解【详解】解:(1)a(m﹣1)+b(1﹣m)=(m﹣1)(a﹣b);(1)原式=(m1+4+4m)(m1+4﹣4m)=(m+1)1(m﹣1)1.本题考查提公因式与公式法的综合运用,解题关键在于掌握运算法则26、(1)①见解析;②60°;(1)见解析;(3)见解析.【解析】

(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;(1)延长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论