天津市红桥教育中学心2025届九上数学开学预测试题【含答案】_第1页
天津市红桥教育中学心2025届九上数学开学预测试题【含答案】_第2页
天津市红桥教育中学心2025届九上数学开学预测试题【含答案】_第3页
天津市红桥教育中学心2025届九上数学开学预测试题【含答案】_第4页
天津市红桥教育中学心2025届九上数学开学预测试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页天津市红桥教育中学心2025届九上数学开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点在反比例函数的图象上则的值是()A. B. C.1.5 D.62、(4分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=()A. B.2 C.3 D.+23、(4分)使根式有意义的的范围是().A.x≥0 B.x≥4 C.x≥-4 D.x≤-44、(4分)点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能确定5、(4分)下列事件中,属于随机事件的是().A.凸多边形的内角和为B.凸多边形的外角和为C.四边形绕它的对角线交点旋转能与它本身重合D.任何一个三角形的中位线都平行于这个三角形的第三边6、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个7、(4分)如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC8、(4分)下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把菱形沿折叠,使点落在上的点处,若,则的大小为_____________.10、(4分)某n边形的每个外角都等于它相邻内角的,则n=_____.11、(4分)如图,在矩形中,的平分线交于点,连接,若,,则_____.12、(4分)若方程的两根互为相反数,则________.13、(4分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).(1)判断△ABC的形状,请说明理由.(2)求△ABC的周长和面积.15、(8分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处.(1)求OA,OC的长;(2)求直线AD的解析式;(3)点M在直线DE上,在x轴的正半轴上是否存在点N,使以M、A、N、C为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.16、(8分)甲、乙两家旅行社为了吸引更多的顾客,分别推出赴某地旅游的团体(多于4人)优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:所有人都打七五折优惠.已知这两家旅行社的原价均为每人1000元,那么随着团体人数的变化,哪家旅行社的收费更优惠.17、(10分)如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(2,m),一次函数的图象分别与x轴、y轴交于B、C两点.(1)求m、k的值;(2)求∠ACO的度数和线段AB的长.18、(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,5),B(﹣2,1),C(﹣1,1).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,写出△A1B1C1的各顶点的坐标,并画出△A1B1C1.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将一块边长为12cm正方形纸片ABCD的顶点A折叠至DC边上的E点,使DE=5,折痕为PQ,则PQ的长为_________cm.20、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.21、(4分)八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为86分;八(2)班54人,平均成绩为80分,则这两个班的平均成绩为__分.22、(4分)已知a=b﹣2,则代数式的值为_____.23、(4分)如图,是根据四边形的不稳定性制作的边长均为的可活动菱形衣架,若墙上钉子间的距离,则=______度.二、解答题(本大题共3个小题,共30分)24、(8分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.25、(10分)某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?26、(12分)(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

将A的坐标代入反比例函数进行计算,可得答案.【详解】将A(﹣2,3)代入反比例函数,得k=﹣2×3=﹣6,故选:A.本题考查反比例函数,解题的关键是将点A代入反比例函数.2、C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.3、C【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】使根式有意义,则4+x≥0,解得:x≥-4,故x的范围是:x≥-4,故选C.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.4、C【解析】

先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.【详解】把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,∵k<0,∴a<b.故选C.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.5、C【解析】

随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:、凸n多边形的内角和,故不可能为,所以凸多边形的内角和为是不可能事件;、所有凸多边形外角和为,故凸多边形的外角和为是必然事件;、四边形中,平行四边形绕它的对角线交点旋转能与它本身重合,故四边形绕它的对角线交点旋转能与它本身重合是随机事件;、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:.本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.7、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.8、D【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据菱形性质,得到∠ADC=∠B=70°,从而得出∠AED=∠ADE,又因为AD∥BC,得到∠DAE=∠AEB,进而求出∠ADE=∠AED=55°,从而得到∠EDC【详解】∵四边形ABCD为菱形,∴∠ADC=∠B=70°,AD∥BC,AD=AB∵AD=AB=AE,∴∠AED=∠ADE∵AD∥BC,∴∠DAE=∠AEB=70°∴∠ADE=∠AED=(180°-∠DAE)÷2=55°∴∠EDC=70°-∠ADE=70°-55°=15°本题主要考查菱形的基本性质,在计算过程中综合运用了等边对等角,三角形内角和定理等知识点10、1.【解析】

根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.【详解】解:因为多边形的每个外角和它相邻内角的和为180°,又因为每个外角都等于它相邻内角的,所以外角度数为180°×=36°.∵多边形的外角和为360°,所以n=360÷36=1.故答案为:1.本题考查多边形的内角与外角关系,以及多边形的外角和为360°.11、【解析】【分析】由矩形的性质可知∠D=90°,AD=BC=8,DC=AB,AD//BC,继而根据已知可得AB=AE=5,再利用勾股定理即可求得CE的长.【详解】∵四边形ABCD是矩形,∴∠D=90°,AD=BC=8,DC=AB,AD//BC,∴∠AEB=∠EBC,又∵∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=5,∴DC=5,DE=AD-AE=3,∴CE=,故答案为.【点睛】本题考查了矩形的性质,勾股定理的应用,求出AB的长是解题的关键.12、【解析】

根据一元二次方程根与系数的关系即可求出答案.【详解】∵两根互为相反数,∴根据韦达定理得:m²-1=0,解得:m=1或m=-1当m=1时,方程是x²+1=0没有实数根当m=-1时,方程是x²-1=0有两个实数根所以m=-1故答案为:-1本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.13、①②④.【解析】

利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt△ABF中,AF===8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴=,∴===,而==2,∴≠,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=×6×3=9,S△GHF=×3×4=6,∴S△ABG=S△FGH,所以②正确.故答案是:①②④.本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.三、解答题(本大题共5个小题,共48分)14、(1)△ABC是直角三角形(2)5【解析】

(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;

(2)根据三角形的周长和面积公式解答即可.【详解】(1)△ABC是直角三角形,由勾股定理可得:ACBCAB∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)△ABC的周长为:AC+BC+AB=5+2△ABC的面积为:12本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.15、(1)OA=6,OC=8;(2)y=﹣2x+6;(3)存在点N,点N的坐标为(0.5,0)或(15.5,0).【解析】

(1)根据非负数的性质求得m、n的值,即可求得OA、OC的长;(2)由勾股定理求得AC=10,由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8﹣OD=8﹣x,在Rt△DEC中,由勾股定理可得x2+42=(8﹣x)2,解方程求得x的值,即可得DE=OD=3,由此可得点D的坐标为(3,0),再利用待定系数法求得直线AD的解析式即可;(3)过E作EG⊥OC,在Rt△DEC中,根据直角三角形面积的两种表示法求得EG的长,再利用勾股定理求得DG的长,即可求得点E的坐标,利用待定系数法求得DE的解析式,再根据平行四边形的性质求得点N的坐标即可.【详解】(1)∵线段OA,OC的长分别是m,n且满足,∴OA=m=6,OC=n=8;(2)设DE=x,由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8﹣OD=8﹣x,AC==10,可得:EC=10﹣AE=10﹣6=4,在Rt△DEC中,由勾股定理可得:DE2+EC2=DC2,即x2+42=(8﹣x)2,解得:x=3,可得:DE=OD=3,所以点D的坐标为(3,0),设AD的解析式为:y=kx+b,把A(0,6),D(3,0)代入解析式可得:,解得:,所以直线AD的解析式为:y=﹣2x+6;(3)过E作EG⊥OC,在Rt△DEC中,,即,解得:EG=2.4,在Rt△DEG中,DG=,∴点E的坐标为(4.8,2.4),设直线DE的解析式为:y=ax+c,把D(3,0),E(4.8,2.4)代入解析式可得:,解得:,所以DE的解析式为:y=x﹣4,把y=6代入DE的解析式y=x﹣4,可得:x=7.5,即AM=7.5,当以M、A、N、C为顶点的四边形是平行四边形时,CN=AM=7.5,所以N=8+7.5=15.5,N'=8﹣7.5=0.5,即存在点N,且点N的坐标为(0.5,0)或(15.5,0).本题是一次函数综合题目,考查了非负性、用待定系数法求一次函数的解析式、勾股定理、平行四边形的性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过求一次函数的解析式和平行四边形的性质才能得出结果.16、当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.【解析】

设团体有x人,收费y元,得出y甲=4000+500(x-4)=500x+2000,y乙=750x,再分情况列不等式和方程求解可得.【详解】设团体有人,收费元∴,∵当时,,解得;∴当时,,解得;当时,,解得;∴当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系与不等关系.17、(1)m=4,k=2;(2)∠ACO=45°,AB.【解析】

(1)将点A(2,m)代入y=-x+6可得m的值,再将所得点A坐标代入y=kx可得k;

(2)先求得点B、C的坐标,从而得出△OBC是等腰直角三角形,据此知∠ACO=45°,根据勾股定理可得AB的长.【详解】解:(1)把A(2,m)代入y=-x+6得:m=-2+6=4,

把A(2,4)代入y=kx得4=2k,解得k=2;

(2)由y=-x+6可得B(6,0)、C(0,6),

∴OB=OC=6,

∴△OBC是等腰直角三角形,

∴∠ACO=45°.

设AD⊥x轴于点D,AE⊥y轴于点E,

则AD=4,BD=OB-OD=6-2=4,

在Rt△ABD中,AB=.本题主要考查了待定系数法求函数解析式,等腰三角形的判定与性质、勾股定理等知识,掌握基本定理是解题的关键.18、(1)图形见解析;A1的坐标为(2,2),B1点的坐标为(1,﹣2);(2)图形见解析;A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);(1)图形见解析;A1(5,1),B1(1,2),C1(1,1).【解析】

(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(1)利用网格和旋转的性质画出△A2B1C1,然后写出△A2B1C1的各顶点的坐标.【详解】(1)如图,△A1B1C1为所作,因为点C(﹣1,1)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移1个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(1,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);(1)如图,△A2B1C1为所作,A1(5,1),B1(1,2),C1(1,1).一、填空题(本大题共5个小题,每小题4分,共20分)19、13【解析】

先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.【详解】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴PQ=AE=故答案是:13.本题主要考查正方形中的折叠问题,正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.20、2【解析】

连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.21、82.1【解析】

根据加权平均数公式,用(1)、(2)班的成绩和除以两班的总人数即可得.【详解】(分,故答案为:82.1.本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.若个数,,,,的权分别是,,,,,则叫做

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论