版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页四川省南充市阆中学市2025届数学九上开学教学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,▱ABCD的对角线AC、BD相交于点O,已知AD=10,BD=14,AC=8,则△OBC的周长为()A.16 B.19 C.21 D.282、(4分)若关于的不等式组的整数解共有个,则的取值范围是()A. B. C. D.3、(4分)计算的结果是()A.-3 B.3 C.6 D.94、(4分)的平方根是()A. B. C. D.5、(4分)某校田径运动会上,参加男子跳高的16名运动员成绩如下表:成绩(m)1.451.501.551.601.651.70人数343231则这些运动员成绩的中位数是()A.1.5 B.1.55 C.1.60 D.1.656、(4分)如图所示的图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.7、(4分)如图,在平面直角坐标系中,点是直线上一点,过作轴,交直线于点,过作轴,交直线于点,过作轴交直线于点,依次作下去,若点的纵坐标是1,则的纵坐标是().A. B. C. D.8、(4分)如图,在矩形ABCD中,点E是AD中点,且,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长度为()A.2 B. C. D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第_____象限;10、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为________________11、(4分)如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.12、(4分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.13、(4分)某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,BD是正方形ABCD的对角线,BC=4,点H是AD边上的一动点,连接CH,作,使得HE=CH,连接AE。(1)求证:;(2)如图2,过点E作EF//AD交对角线BD于点F,试探究:在点H的运动过程中,EF的长度是否为一个定值;如果是,请求出EF的长度。15、(8分)如图,在正方形ABCD中,点E,F分别是AB,BC上的点,且AF⊥DE.求证:AE=BF.16、(8分)如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.(1)求直线和双曲线的解析式;(2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;(3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.①求直线的解析式;②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.17、(10分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.18、(10分)一个“数值转换机”如图所示,完成下表并回答下列问题:输入输出(1)根据上述计算你发现了什么规律?(2)请说明你发现的规律是正确的.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.20、(4分)若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m=.21、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.22、(4分)因式分解:2a2﹣8=.23、(4分)直角三角形的两边长为6cm,8cm,则它的第三边长是_____________。二、解答题(本大题共3个小题,共30分)24、(8分)如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1(1)分别求出这两个函数的解析式;(2)求ΔAOB的面积;(3)点P在x轴上,且ΔPOA是等腰三角形,请直接写出点P的坐标.25、(10分)如图,在四边形AECF中,∠E=∠F=90°.CE、CF分别是△ABC的内,外角平分线.(1)求证:四边形AECF是矩形.(2)当△ABC满足什么条件时,四边形AECF是正方形?请说明理由.26、(12分)如图,在平面直角坐标系中,的顶点坐标分别是,,.(1)将平移得到,且的坐标是,画出;(2)将绕点逆时针旋转得到,画出.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由平行四边形的性质得出OA=OC=4,OB=OD=7,BC=AD=10,即可求出△OBC的周长.【详解】∵四边形ABCD是平行四边形,∴OA=OC=4,OB=OD=7,BC=AD=10,∴△OBC的周长=OB+OC+AD=4+7+10=1.故选:C.本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2、B【解析】
首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m的范围.【详解】解:,解①得x<m,
解②得x≥1.
则不等式组的解集是1≤x<m.
∵不等式组有4个整数解,
∴不等式组的整数解是1,4,5,2.
∴2<m≤3.故选:B.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3、B【解析】
根据算数平方根的意义解答即可.【详解】∵32=9,∴=3.故选:B.本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.4、B【解析】
根据开平方的意义,可得一个数的平方根.【详解】解:9的平方根是±3,
故选:B.本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.5、B【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,据此可得.【详解】将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).故选:B本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6、D【解析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意.故选:D.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】
由题意分别求出A1,A2,A3,A4的坐标,找出An的纵坐标的规律,即可求解.【详解】∵点B1的纵坐标是1,∴A1(,1),B1(,1).∵过B1作B1A2∥y轴,交直线y=2x于点A2,过A2作AB2∥x轴交直线y于点B2…,依次作下去,∴A2(,),B2(1,),A3(1,2),B3(,2),A4(,2),…可得An的纵坐标为()n﹣1,∴A2019的纵坐标是()2018=1.故选B.本题考查了一次函数图象上点的坐标特征、两直线平行或相交问题以及规律型中数字的变化类,找出An的纵坐标是解题的关键.8、C【解析】
连接CE,根据线段中点的定义求出DE、AD,根据矩形的对边相等可得BC=AD,根据线段垂直平分线上的点到两端点的距离相等可得CE=BC,再利用勾股定理列式求出CD,然后根据矩形的对边相等可得AB=CD.【详解】如图,连接CE,∵点E是AD中点,∴DE=AE=2,AD=2AE=2×2=4,∴BC=AD=4,∵BE
的垂直平分线MN
恰好过点C,∴CE=BC=4,在Rt△CDE中,由勾股定理得,CD=,∴AB=CD=2.故选C.本题考查了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,难点在于作辅助线构造出直角三角形.二、填空题(本大题共5个小题,每小题4分,共20分)9、四【解析】
直接利用各象限内点的坐标特点得出点的位置.【详解】,,点的位置在第四象限.故答案为:四.此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.10、x<-1;【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.【详解】解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.11、AC⊥BDAC=BDAC⊥BD且AC=BD【解析】
先证明四边形EFGH是平行四边形,(1)在已证平行四边形的基础上,要使所得四边形是矩形,则需要一个角是直角,故对角线应满足互相垂直(2)在已证平行四边形的基础上,要使所得四边形是菱形,则需要一组邻边相等,故对角线应满足相等(3)联立(1)(2),要使所得四边形是正方形,则需要对角线垂直且相等【详解】解:连接AC、BD.∵E、F、G、H分别是AB、BC、CD、DA边上的中点,∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.∴EF∥HG,EF=GH,FG∥EH,FG=EH.∴四边形EFGH是平行四边形;(1)要使四边形EFGH是矩形,则需EF⊥FG,由(1)得,只需AC⊥BD;(2)要使四边形EFGH是菱形,则需EF=FG,由(1)得,只需AC=BD;(3)要使四边形EFGH是正方形,综合(1)和(2),则需AC⊥BD且AC=BD.故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD此题主要考查平行四边形,矩形,菱形以及正方形的判定条件12、1或1.【解析】
试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.13、7.5【解析】
根据中位数的定义先把数据从小到大的顺序排列,找出最中间的数即可得出答案.【详解】解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是=7.5(环).故答案为:7.5.此题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题(本大题共5个小题,共48分)14、(1)见解析(2)EF为定值4【解析】
(1)根据CH⊥HE与正方形的内角为90°即可证明;(2)连接FH,作EM⊥AG延长线,可证明四边形EFHM为矩形,再得到EF=HM=DC即可求解.【详解】(1)∵CH⊥HE∴∠CHD+∠AHE=90°,又∠DCH+∠CHD=90°,∴(2)连接FH,作EM⊥AG延长线,∵EF//AD,FH⊥DA,∴四边形EFHM为矩形∴EF=HM∵CH=HE,,又∠CDH=∠HME=90°,∴△CDH≌△HME∴HM=CD,故EF=CD=4为定值.此题主要考查正方形的判定与性质,解题的关键是根据题意作出辅助线进行求解.15、见解析【解析】
证得∠ADE=∠FAB,由ASA证得△DAE≌△ABF,即可得出结论.【详解】∵四边形ABCD是正方形∴AB=AD,∠ABF=∠DAE=90°∴∠BAF+∠DAF=∵AF⊥DE∴∠ADE+∠DAF=∴∠BAF=∠ADE∴ΔABF≌ΔDAE∴AE=BF本题考查了正方形的性质、直角三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.16、(1);(2);(3)点的坐标为或.【解析】
(1)待定系数法求一次函数解析式和反比例函数解析式,将已知点坐标代入并解方程(组)即可;
(2)先求出直线l1与坐标轴的交点坐标,可得:△COE是等腰直角三角形,再由翻折可得:OCHE是正方形.即可求出H的坐标;
(3)①先待定系数法求直线AO解析式为y=3x,再由△AEG的面积与△OFG的面积相等可得:EF∥AO,即可求直线l2的解析式;
②存在,由S△PBC=S△OBC可知:点P在经过点O或H平行于直线l1:y=-x+4的直线上,易求得点P的坐标为P(-1,1)或P(1,7).【详解】解:(1)将、点代入得,解得:直线的解析式为:;将代入中,得,双曲线的解析式为:.(2)如图1中,在中,令,得:是等腰直角三角形,由翻折得:,是正方形..(3)如图2,连接,①、.设直线解析式为,,直线解析式为,直线的解析式为:;②存在,点坐标为:或.解方程组得:,;;,点在经过点或平行于直线的直线上,易得:或分别解方程组或得:或点的坐标为或.本题是反比例函数综合题,主要考查了待定系数法求一次函数和反比例函数解析式、翻折的性质、正方形的性质、三角形面积等;解题时要能够将这些知识点联系起来,灵活运用.17、(1);(2);(3)或或.【解析】
(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.18、(1)无论输入为多少,输出的值均为;(2)见详解【解析】
(1)根据题中的“数值转换机”程序代入数值计算即可;(2)根据题中的“数值转换机”程序得到化简即可得到结论.【详解】输入输出(1)无论输入为多少,输出的值均为.(2)此题考查了分式的混合运算,熟练掌握分式的混合运算顺序和因式分解是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、18【解析】是的中位线,.,.由勾股定理得.是的中线,.∴△CEF的周长为6.5+6.5+5=1820、1【解析】试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,根据二次函数对称轴的公式x=-b-2m-1=0考点:二次函数对称轴点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。21、1【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∴DE=BC=×8=4,∵∠AFB=90°,D是AB的中点,∴DF=AB=×6=3,∴EF=DE-DF=1,故答案为:1.本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.22、2(a+2)(a-2).【解析】
2a2-8=2(a2-4)=2(a+2)(a-2).故答案为2(a+2)(a-2)考点:因式分解.23、10cm或cm.【解析】
分8cm的边为直角边与斜边两种情况,利用勾股定理进行求解即可.【详解】解:当8cm的边为直角边时,第三边长为=10cm;当8cm的边为斜边时,第三边长为cm.故答案为:10cm或cm.本题主要考查勾股定理,解此题的关键在于分情况讨论.二、解答题(本大题共3个小题,共30分)24、(1)y=34x;y=2x-5;(2)10;(3)(-5,0)或(5,0)或【解析】
(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.(3)分三种情形讨论即可①OA=O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级信息技术教学计划浙江九年级信息技术教学计划
- 2024助理班主任工作计划
- 综合科教研活动计划
- 2021幼儿园下学年学园工作计划例文
- 仓库管理员月度工作计划成品仓库月度工作计划
- 幼儿园小班新学期的情感教育计划
- 2024学年学校品社组教研工作计划
- 团支部工作计划锦集
- 企业一周工作计划表
- 下半年学生会体育部工作计划范文
- 中国老年教育发展的背景和历史回顾
- 人工智能原理与方法智慧树知到课后章节答案2023年下哈尔滨工程大学
- 分布式光伏电站项目施工方案
- 2024届广东省广州市华南师范大附属中学数学七年级第一学期期末综合测试试题含解析
- PPP模式项目的风险管理分析
- 硫酸安全技术说明书-MSDS
- GB/T 17421.2-2023机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定
- 劳动能力鉴定复查申请书
- 合肥供电公司城市新建住宅小区电力建设技术标准
- 小学三年级上册美术教案(全册)
- 国家开放大学2023年春《MySQL数据库应用》机考网考期末复习资料参考答案
评论
0/150
提交评论