版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁二中2025届高二数学第一学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.2.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.53.如图,某圆锥轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.4.若将双曲线绕其对称中心顺时针旋转120°后可得到某一函数的图象,且该函数在区间上存在最小值,则双曲线C的离心率为()A. B.C.2 D.5.向量,向量,若,则实数()A. B.1C. D.6.曲线的离心率为()A. B.C. D.7.已知函数(为自然对数的底数),若的零点为,极值点为,则()A. B.0C.1 D.28.()A.-2 B.0C.2 D.39.下列椭圆中,焦点坐标是的是()A. B.C. D.10.“”是“直线:与直线:平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120 B.84C.56 D.2812.的内角A,B,C的对边分别为a,b,c,若,则一定是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线上任意一点,为抛物线的焦点,为平面内一定点,则的最小值为__________.14.已知函数,则______15.若函数,则在点处切线的斜率为______16.直线l过抛物线的焦点F,与抛物线交于A,B两点,与其准线交于点C,若,则直线l的斜率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上的点M(5,m)到焦点F的距离为6.(1)求抛物线C的方程;(2)过点作直线l交抛物线C于A,B两点,且点P是线段AB的中点,求直线l方程.18.(12分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程19.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标20.(12分)定义:设是空间的一个基底,若向量,则称有序实数组为向量在基底下的坐标.已知是空间的单位正交基底,是空间的另一个基底,若向量在基底下的坐标为(1)求向量在基底下的坐标;(2)求向量在基底下的模21.(12分)已知椭圆:过点,其左、右顶点分别为,,上顶点为,直线与直线的斜率之积为.(1)求椭圆的方程;(2)如图,直线:分别与线段(不含端点)和线段的延长线交于,两点,直线与椭圆的另一交点为,求证:,,三点共线.22.(10分)已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.2、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D3、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.4、C【解析】由题意,可知双曲线的一条渐近线的倾斜角为120°,再确定参数的正负即可求解.【详解】双曲线,令,则,显然,则一条渐近线方程为,绕其对称中心顺时针旋转120°后可得到某一函数的图象,则渐近线就需要旋转到与坐标轴重合,故渐近线方程的倾斜角为120°,即,该函数在区间上存在最小值,可知,所以,所以.故选:C5、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.6、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.7、C【解析】令可求得其零点,即的值,再利用导数可求得其极值点,即的值,从而可得答案【详解】解:,当时,,即,解得;当时,恒成立,的零点为又当时,为增函数,故在,上无极值点;当时,,,当时,,当时,,时,取到极小值,即的极值点,故选:C【点睛】本题考查利用导数研究函数的极值,考查函数的零点,考查分段函数的应用,突出分析运算能力的考查,属于中档题8、C【解析】根据定积分公式直接计算即可求得结果【详解】由故选:C9、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B10、C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C11、B【解析】按照框图中程序,逐步执行循环,即可求得答案.【详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B12、B【解析】利用余弦定理化角为边,从而可得出答案.【详解】解:因为,所以,则,所以,所以是等腰三角形.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】利用抛物线的定义,再结合图形即求.【详解】由题可得抛物线的准线为,设点在准线上的射影为,则根据抛物线的定义可知,∴要求取得最小值,即求取得最小,当三点共线时最小,为.故答案为:3.14、【解析】根据导数的定义求解即可【详解】由,得,所以,故答案为:15、【解析】根据条件求出,,再求即答案.【详解】∵,∴,则和,得,,∴,,∴,所以在点处切线的斜率为.故答案为:16、【解析】由抛物线方程求出焦点坐标与准线方程,设直线为,、,即可得到的坐标,再联立直线与抛物线方程,消元列出韦达定理,表示出、的坐标,根据得到方程,求出,即可得解;【详解】解:抛物线方程为,则焦点,准线为,设直线为,、,则,由,消去得,所以,,则,,因为,所以,所以,所以,解得,所以,即直线为,所以直线的斜率为;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线定义有求参数,即可写出抛物线方程.(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k,即可得直线l方程【小问1详解】由题设,抛物线准线方程为,∴抛物线定义知:可得,故【小问2详解】由题设,直线l的斜率存在且不为0,设联立方程,得,整理得,则.又P是线段AB的中点,∴,即故l18、(1)(2)或【解析】(1)、由题意可知直线的方程为,圆的圆心为,半径为,求出圆心到直线的距离,根据勾股定理即可求出与圆相交所得的弦长;(2)、设,因为为的中点,所以,又因为,均在圆上,将,坐标代入圆方程,即可求出点坐标,即可求出直线的方程【小问1详解】由题意:直线过坐标原点,且直线的斜率为直线的方程为,圆的方程为圆的方程可化为:圆的圆心为,半径为圆的圆心到直线:的距离为,与圆相交所得的弦长为【小问2详解】设,为的中点,又,均在圆上,或直线方程或19、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.20、(1)(2)【解析】(1)根据向量在基底下的坐标为,得出向量在基底下的坐标;(2)根据向量在基底下的坐标直接计算模即可【小问1详解】因为向量在基底下坐标为,则,所以向量在基底下的坐标为.【小问2详解】因为向量在基底下的坐标为,所以向量在基底下的模为.21、(1);(2)证明见解析.【解析】(1)由和,联立求解;(2)由(1)易得直线:,直线:,,分别与x=t联立,求得M,N坐标,设,利用,得到,然后两边乘以,结合点P在椭圆上化简得到即可,【详解】(1)在椭圆中,,,,则,,由题意得:,又,解得,,所以椭圆的方程为.(2)由(1)可知,,,,则直线:,直线:,由题意,,联立,同理联立,设,则①,且点满足:,即,两边乘以,可得:,代入①得:,而,则,所以,,三点共线.22、(1)(2)【解析】(1)圆关于直线对称,半径不变,只需求出圆心对称的坐标即可.(2)将四边形面积分成两个全等的直角三角形,利用直角三角形的性质,一条直角边不变时,斜边与另外一条直角边的大小成正相关,从而得到面积的最小值与最大值.【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《软件工程概论》2022-2023学年第一学期期末试卷
- 个人素质提升与职业发展的关系计划
- 许昌学院《图像处理基础》2021-2022学年第一学期期末试卷
- 四年级数学(上)计算题专项练习及答案汇编
- 四年级数学(三位数乘两位数)计算题专项练习及答案
- 二年级数学计算题专项练习1000题汇编集锦
- 医疗收费透明化与患者信息沟通计划
- 落实核心素养在幼儿园教育中的应用计划
- 音乐学校租赁合同三篇
- 幼儿园多媒体教学的有效应用计划
- 精细解读事业单位人事管理回避规定模板课件
- 江苏开放大学汉语作为第二语言教学概论期末复习题
- 员工技能认证工作思路与可行性方案课件
- 《现代信息技术与学科课程有效融合的实践探索》开题报告
- 工程制图某大学山大专升本练习题模拟题参考答案课件
- 国家开放大学《管理学基础》形考任务1-4参考答案
- 压裂优化设计理论及案例
- 大象版五年级科学上册 《火山喷发》教育教学课件
- 急性胰腺炎完整版课件
- 医院污水处理应急预案(3篇)
- 18个文言虚词小故事(参考译文)
评论
0/150
提交评论