吉林省延边市汪清县第六中学2025届高二上数学期末学业水平测试模拟试题含解析_第1页
吉林省延边市汪清县第六中学2025届高二上数学期末学业水平测试模拟试题含解析_第2页
吉林省延边市汪清县第六中学2025届高二上数学期末学业水平测试模拟试题含解析_第3页
吉林省延边市汪清县第六中学2025届高二上数学期末学业水平测试模拟试题含解析_第4页
吉林省延边市汪清县第六中学2025届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延边市汪清县第六中学2025届高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列椭圆中,焦点坐标是的是()A. B.C. D.2.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.3.已知椭圆的短轴长和焦距相等,则a的值为()A.1 B.C. D.4.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是6.双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A. B.C. D.27.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.8.椭圆的焦点为、,上顶点为,若,则()A B.C. D.9.不等式的一个必要不充分条件是()A. B.C. D.10.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.411.已知集合,则()A. B.C. D.12.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线的焦点且斜率为的直线交抛物线于A,两点,,则的值为__________14.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间一组数据如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的进出口总额x,y满足线性相关关系,则______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元15.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.16.千年一遇对称日,万事圆满在今朝,年月日又是一个难得的“世界完全对称日”(公历纪年日期中数字左右完全对称的日期).数学上把这样的对称自然数叫回文数,两位数的回文数共有个(),其中末位是奇数的又叫做回文奇数,则在内的回文奇数的个数为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用长度为80米的护栏围出一个一面靠墙的矩形运动场地,如图所示,运动场地的一条边记为(单位:米),面积记为(单位:平方米)(1)求关于的函数关系;(2)求的最大值18.(12分)近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).参考数据:65091.552.51478.630.5151546.5表中.(1)根据散点图判断与,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量,则有,;③取.19.(12分)如图1所示,在四边形ABCD中,,,,将△沿BD折起,使得直线AB与平面BCD所成的角为45°,连接AC,得到如图2所示的三棱锥(1)证明:平面ABD平面BCD;(2)若三棱锥中,二面角的大小为60°,求三棱锥的体积20.(12分)如图所示等腰梯形ABCD中,,,,点E为CD的中点,沿AE将折起,使得点D到达F位置.(1)当时,求证:平面AFC;(2)当时,求二面角的余弦值.21.(12分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求长.22.(10分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B2、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D3、A【解析】由题设及椭圆方程可得,即可求参数a的值.【详解】由题设易知:椭圆参数,即有,可得故选:A4、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.5、C【解析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C6、D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.7、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.8、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.9、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B10、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.11、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.12、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求出直线的方程,与抛物线的方程联立,利用根与系数的关系可,,由抛物线的定义可知,,,即可得到【详解】解:抛物线的焦点,,准线方程为,设,,,,则直线的方程为,代入可得,,,由抛物线的定义可知,,,,解得故答案为:214、①.1.6;②.3.65.【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.6515、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:16、【解析】根据分类加法计数原理,结合题中定义、组合的定义进行求解即可.【详解】两位数的回文奇数有,共个,三位数的回文奇数有,四位数的回文奇数有,所以在内的回文奇数的个数为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)平方米【解析】(1)由题意得矩形场地的另一边长为80-2x米,通过矩形面积得出关于的函数表达式;(2)利用二次函数的性质求出的最大值即可【小问1详解】解:由题意得矩形场地的另一边长为80-2x米,又,得,所以【小问2详解】解:由(1)得,当且仅当时,函数取得最大值平方米18、(1);(2);810公斤;(3).【解析】(1)根据散点图的变化趋势,结合给定模型的性质直接判断适合的模型即可.(2)将(1)中模型取对得,结合题设及表格数据求及参数,进而可得参数c,即可确定回归方程,进而估计时粮食亩产量y的值.(3)由题设知,结合特殊区间的概率值及正态分布的对称性求即可.【小问1详解】根据散点图,呈现非线性的变化趋势,故更适合作为关于的回归方程类型.【小问2详解】对两边取对数,得,即,由表中数据得:,,,则,∴关于的回归方程为,当时,,∴当化肥施用量为27公斤时,粮食亩产量约为810公斤.小问3详解】依题意,,则有,∴,则,∴这种化肥的有效率超过58%的概率约为.19、(1)证明见解析;(2).【解析】(1)过作面,连接,结合题设易知,根据过面外一点在该面上垂线性质知重合,再应用面面垂直的判定证明结论.(2)面中过作,结合题设构建空间直角坐标系,设并确定相关点坐标,求面、面法向量,应用空间向量夹角的坐标表示列方程求参数,最后由棱锥体积公式求体积.【小问1详解】由题设,易知:△是等腰直角三角形,即,将△沿BD折起过程中使直线AB与平面BCD所成的角为45°,此时过作面,连接,如下图示,所以,在△中,又且面,因为过平面外一点有且只有一条垂线段,故重合,此时面,又面,故平面ABD平面BCD;【小问2详解】在平面中过作,由(1)结论可构建如下图示的空间直角坐标系,由,,,若,则,故,,,若是面的一个法向量,则,若,则,若是面的一个法向量,则,若,则,所以,由二面角的大小为60°有,解得,故20、(1)证明见解析(2)【解析】(1)结合线面垂直的判定定理来证得结论成立.(2)建立空间直角坐标系,利用向量法来求得二面角的大小.【小问1详解】设,由于四边形是等腰梯形,是的中点,,所以,所以四边形是平行四边形,由于,所以四边形是菱形,所以,由于,是的中点,所以,由于,所以平面.【小问2详解】由于,所以三角形、三角形、三角形是等边三角形,设是的中点,设,则,所以,所以,由于两两垂直.以为空间坐标原点建立如图所示空间直角坐标系,,,平面的法向量为,设平面法向量为,则,故可设,由图可知,二面角为钝角,设二面角为,,则.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论