版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市“4N”高中联合体2025届数学高二上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}2.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆3.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.4.已知直线与直线垂直,则()A. B.C. D.5.已知,,则下列结论一定成立的是()A. B.C. D.6.在直三棱柱中,,且,点是棱上的动点,则点到平面距离的最大值是()A. B.C.2 D.7.高二某班共有60名学生,其中女生有20名,“三好学生”人数是全班人数的,且“三好学生”中女生占一半.现从该班学生中任选1人参加座谈会,则在已知没有选上女生的条件下,选上的学生是“三好学生”的概率为()A. B.C. D.8.设,是椭圆C:的左、右焦点,若椭圆C上存在一点P,使得,则椭圆C的离心率e的取值范围为()A. B.C. D.9.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁10.函数在处有极小值5,则()A. B.C.或 D.或311.集合,则集合A的子集个数为()A.2个 B.4个C.8个 D.16个12.圆与圆的位置关系是()A.内含 B.相交C.外切 D.外离二、填空题:本题共4小题,每小题5分,共20分。13.已知正方形的边长为2,对部分以为轴进行翻折,翻折到,使二面角的平面角为直二面角,则___________.14.已知函数,,则曲线在处的切线方程为___________.15.在数列中,,,则数列的前6项和为___________.16.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题的题设条件中.问题:等差数列的公差为,满足,________?(1)求数列的通项公式;(2)求数列的前项和得到最小值时的值.19.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.20.(12分)已知,,函数,直线是函数图象的一条对称轴(1)求函数的解析式及单调递增区间;(2)若,,的面积为,求的周长21.(12分)已知数列{}的前n项和为,且2=3-3(n∈)(1)求数列{}的通项公式(2)若=(n+1),求数列{}的前n项和22.(10分)已知直线与直线交于点.(1)求过点且平行于直线的直线的方程,并求出两平行直线间的距离;(2)求过点并且在两坐标轴上的截距互为相反数的直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D2、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.3、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.4、D【解析】根据互相垂直两直线的斜率关系进行求解即可.【详解】由,所以直线的斜率为,由,所以直线的斜率为,因为直线与直线垂直,所以,故选:D5、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.6、D【解析】建立空间直角坐标系,设出点的坐标,运用点到平面的距离公式,求出点到平面距离的最大值.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,设点,故,,.设设平面的法向量为,则即,取,则.所以点到平面距离.当,即时,距离有最大值为.故选:D.【点睛】本题考查空间内点到面的距离最值问题,属于中档题.7、C【解析】设事件表示“选上的学生是男生”,事件表示“选上的学生是三好学生,求出和,利用条件概率公式计算即可求解.【详解】设事件表示“选上的学生是男生”,事件表示“选上的学生是‘三好学生’”,则所求概率为.由题意可得:男生有人,“三好学生”有人,所以“三好学生”中男生有人,所以,,故.故选:C.8、B【解析】先设,根据P在椭圆上得到,由,得到的范围,即为离心率的范围.【详解】由椭圆的方程可得,,设,由,则,即,由P在椭圆上可得,所以,代入可得所以,因为,所以整理可得:,消去得:所以,即所以.故选:B9、D【解析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D10、A【解析】由题意条件和,可建立一个关于的方程组,解出的值,然后再将带入到中去验证其是否满足在处有极小值,排除增根,即可得到答案.【详解】由题意可得,则,解得,或.当,时,.由,得;由,得.则在上单调递增,在上单调递减,故在处有极大值5,不符合题意.当,时,.由,得;由,得.则在上单调递减,在上单调递增,故在处有极小值5,符合题意,从而故选:A.11、C【解析】取,再根据的周期为4,可得,即可得解.【详解】因为,所以.时,,时,,时,,时,,所以集合,所以的子集的个数为,故选:C.12、C【解析】分别求出两圆的圆心、半径,再求出两圆的圆心距即可判断作答.【详解】圆的圆心,半径,圆,即的圆心,半径,则,即有,所以圆与圆外切.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】根据,则,根据条件求得向量夹角即可求得结果.【详解】由题知,,取的中点O,连接,如图所示,则,又二面角的平面角为直二面角,则,又,则,为等边三角形,从而,则,故答案为:-214、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:15、129【解析】依次写出前6项,即可求得数列的前6项和.【详解】数列中,,则,,,则数列的前6项和为故答案为:12916、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)根据题意,可以利用铅锤底水平高的方法求四边形APBQ的面积,即是要利用韦达定理算出.【小问1详解】由题意,即;抛物线,焦点为,故,所以椭圆C的标准方程为:.【小问2详解】由题意作图如下:设AB直线的方程为:,并设点,,联立方程:得:,∴……①,……②,;由于A,B两点在直线PQ的两边(如上图),所以,即,将①②带入得:,解得;即由题意直线PQ的方程为,联立方程解得,,∴;将线段PQ看做铅锤底,A,B两点的横坐标之差看做水平高,得四边形APBQ的面积为:,当且仅当m=0时取最大值,而,所以的最大值为.18、(1)选择条件见解析,(2)【解析】(1)设等差数列的公差为,由,得到,选①,联立求解;选②,联立求解;选③,联立求解;(2)由(1)知,令求解.【小问1详解】解:设等差数列的公差为,得,选①,得,故,∴.选②,得,得,故,∴.选③,,得,故,∴;【小问2详解】由(1)知,,,∴数列是递增等差数列.由,得,∴时,,时,,∴时,得到最小值.19、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1),单调递增区间为.(2)【解析】(1)先利用向量数量积运算、二倍角公式、辅助角公式求出,再求单增区间;(2)利用面积公式求出,再利用余弦定理求出,即可求出周长.小问1详解】已知,,函数,所以.因为直线是函数图象的一条对称轴,所以,所以,又,所以当k=0时,符合题意,此时要求的单调递增区间,只需,解得:,所以的单调递增区间为.【小问2详解】由于,所以,所以.因为,所以.因为的面积为,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周长.21、(1);(2).【解析】(1)利用的关系可得,即可知为等比数列,写出等比数列通项公式即可.(2)由(1)得,利用错位相减求和法即可求出前n项和.【小问1详解】当时,,解得,当时,,则,即,又,则,∴,故是以为首项,以3为公比的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟用香精市场环境与对策分析
- 工业管道维护与保养预案
- 大数据时代企业数据清洗手册
- 在线旅游平台客户服务质量提升预案
- Unit 7 语音(复习讲义)-2023-2024学年六年级英语上册单元速记·巧练(译林版三起)
- Unit 6 语音(复习讲义)-2023-2024学年五年级英语上册单元速记·巧练(译林版三起)
- 2021级大学英语第一学期学习通超星期末考试答案章节答案2024年
- 医疗器械安全操作与维护指南
- 化妆品公司市场营销策略及实施
- M6U2语法复习+巩固练习-2023-2024学年六年级英语上册单元速记·巧练(外研版三起)
- 节假日期间医疗管理规定
- 石油钻机常识
- 人教版九年级历史上册 第一至四单元 单元测试卷( 2024年秋)
- 2024年4月自考00018计算机应用基础试题及答案含评分参考
- 农产品质量保证金协议书
- JJG(交通) 173-2021 钢质护栏立柱埋深冲击弹性波检测仪检定规程
- 夫妻离婚协议书电子版
- 对外投资合作国别(地区)指南 -坦桑尼亚-20240529-00493
- 2024年保密教育线上培训考试题目含答案【模拟题】
- 中西医方法论比较研究兼论中医的科学性
- 中医医疗技术管理制度
评论
0/150
提交评论