版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省延边市第二中学高一数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是A.点P在内部 B.点P在外部C.点P在线段AC上 D.点P在直线AB上2.已知角α的终边过点,则的值是()A. B.C.0 D.或3.若函数的定义域是()A. B.C. D.4.已知直线过,两点,则直线的斜率为A. B.C. D.5.已知定义在R上的函数是奇函数,设,,,则有()A. B.C. D.6.过点且平行于直线的直线方程为()A. B.C. D.7.命题“,”的否定是()A, B.,C., D.,8.设函数,有四个实数根,,,,且,则的取值范围是()A. B.C. D.9.已知函数在区间上单调递减,则实数的取值范围为()A. B.C. D.10.已知三条不重合的直线,,,两个不重合的平面,,有下列四个命题:①若,,则;②若,,且,则;③若,,,,则;④若,,,,则.其中正确命题的个数为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数fx=12.如图,若角的终边与单位圆交于点,则________,________13.已知角A为△ABC的内角,cosA=-4514.已知,,,则,,的大小关系是______.(用“”连接)15.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________16.已知,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值18.证明:(1);(2)19.已知函数,其中m为常数,且(1)求m的值;(2)用定义法证明在R上是减函数20.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.21.已知函数(1)若的值域为R,求实数a的取值范围;(2)若,解关于x的不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解【详解】因为:,所以:,所以:,即点P在线段AC上,故选C.【点睛】本题考查了平面向量的加减运算及向量共线,属简单题.2、B【解析】根据三角函数的定义进行求解即可.【详解】因为角α的终边过点,所以,,,故选:B3、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C4、C【解析】由斜率的计算公式计算即可【详解】因为直线过,两点,所以直线的斜率为.【点睛】本题考查已知两点坐标求直线斜率问题,属于基础题5、D【解析】根据函数是奇函数的性质可求得m,再由函数的单调性和对数函数的性质可得选项.【详解】解:因为函数的定义在R上的奇函数,所以,即,解得,所以,所以在R上单调递减,又因为,,所以故选:D.6、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A7、D【解析】利用全称量词命题的否定变换形式即可求解.【详解】的否定是,的否定是,故“,”的否定是“,”,故选:D8、A【解析】根据分段函数解析式研究的性质,并画出函数图象草图,应用数形结合及题设条件可得、、,进而将目标式转化并令,构造,则只需研究在上的范围即可.【详解】由分段函数知:时且递减;时且递增;时,且递减;时,且递增;∴的图象如下:有四个实数根,,,且,由图知:时有四个实数根,且,又,由对数函数的性质:,可得,∴令,且,由在上单增,可知,所以故选:A9、A【解析】先由题意,求出函数的单调递减区间,再由题中条件,列出不等式组求解,即可得出结果.【详解】由题意,令,则,即函数的单调递减区间为,因为函数在区间上单调递减,所以,解得,所以,.故选:A.【点睛】关键点点睛:本题的关键是用不等式法求函数的单调递减区间时,应该令,且该函数的周期应为,则.10、B【解析】当在平面内时,,①错误;两个平面的垂线平行,且两个平面不重合,则两个平面平行,②正确;③中,当时,平面可能相交,③错误;④正确.故选B.考点:空间线面位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】先令t=cosx,则t∈-1,1,再将问题转化为关于【详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.12、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;13、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:314、【解析】结合指数函数、对数函数的知识确定正确答案.【详解】,,所以故答案为:15、①.②.【解析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,16、【解析】∵,∴,解得答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果;(2)结合正弦型函数图象,解三角不等式即可求出结果;(3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果.【小问1详解】因为的最大值为1,所以的最大值为,依题意,,解得【小问2详解】由(1)知,由,得所以解得所以,使成立的x取值集合为【小问3详解】依题意,,因为是的一个零点,所以,所以所以,因为,所以,所以t的最大值为18、(1)证明见解析(2)证明见解析【解析】(1)利用三角函数的和差公式,分别将两边化简后即可;(2)利用和2倍角公式构造出齐次式,再同时除以即可证明.【小问1详解】左边===右边===左边=右边,所以原等式得证.【小问2详解】故原式得证.19、(1)1;(2)证明见解析.【解析】(1)将代入函数解析式直接计算即可;(2)利用定义法直接证明函数的单调性即可.【小问1详解】由题意得,,解得;【小问2详解】由(1)知,,所以R,R,且,则,因为,所以,所以,故,即,所以函数在R上是减函数.20、(1)见解析;(2)【解析】(1)将函数化简为,令,则,求出对称轴,对区间与对称轴的位置关系进行分类讨论求出最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等实根,列出相应的不等式组,求解即可.【详解】(1),令,则,对称轴为:当即时,,当即时,,当时,,所以求函数在上的最小值;(2)要满足方程在上有四个不相等的实根,需满足在上有两个不等零点,,解得.【点睛】本题考查动轴定区间分类讨论二次函数最小值,正弦函数的单调性,二次函数的几何性质,属于中档题.21、(1)或.(2)见解析.【解析】(1)当时,的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025专业仓储合同
- 2025国英置业合同成本手册
- 2025年度农村私人鱼塘承包与绿色渔业发展合作合同
- 二零二五年度农产品品牌营销委托收购合作协议3篇
- 二零二五年度车辆未过户期间的车辆事故免责条款合同3篇
- 二零二五年度火锅店转让及底料供应协议3篇
- 二零二五年度执业药师药品市场营销推广服务合同3篇
- 2025年度特种水产品养殖项目合伙经营合同3篇
- 二零二五年度特色小镇建设住房合作协议3篇
- 2025年度家庭农场规模化养猪场整体转让合同3篇
- 门店工程工作总结
- 贵州省黔东南州2023-2024学年九年级上学期期末道德与法治试题
- 湿疹健康宣教课件
- 《妇产科学:宫颈癌》课件
- 河北省承德市承德县2023-2024学年七年级上学期期末生物试卷+
- 精神病健康教育知识宣传
- 2024年《双眼视觉学、验光学、配镜学》等综合知识试题与答案
- 2023年北京海淀七年级上学期期末英语试卷(含答案)
- 急救、生命支持类医学装备调配制度与流程
- 河南省驻马店市重点中学2023-2024学年九年级上学期12月月考语文试题(无答案)
- 江苏省无锡市2022-2023学年上学期初中学业水平调研测试九年级英语期末试题
评论
0/150
提交评论