版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省钢城第四中学数学高一上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为()A. B.C. D.2.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增3.下列命题中正确的是()A. B.C. D.4.设平面向量满足,且,则的最大值为A.2 B.3C. D.5.()A.0 B.1C.6 D.6.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到7.已知全集,集合,,则等于()A. B.C. D.8.函数图象的一条对称轴是A. B.x=πC. D.x=2π9.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)10.已知函数(,,)的图象如图所示,则()A.B.对于任意,,且,都有C.,都有D.,使得二、填空题:本大题共6小题,每小题5分,共30分。11.函数在上为单调递增函数,则实数的取值范围是______12.已知扇形的圆心角为120°,半径为3,则扇形的面积是________.13.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则14.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.15.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______16.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.18.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数3869人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为100万元,每生产万件,需另投入流动成本为万元,在年产量不足19万件时,(万元),在年产量大于或等于19万件时,(万元),每件产品售价为25元,通过市场分析,生产的医用防护用品当年能全部售完(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,某厂家在这一商品的生产中所获利润最大?最大利润是多少?19.已知函数.(1)求函数的单调递增区间;(2)将函数的图象向右平移个单位后得到的图象,求在区间上的最小值.20.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB121.已知二次函数,若不等式的解集为,且方程有两个相等的实数根.(1)求的解析式;(2)若,成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,故选D.2、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.3、A【解析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.4、C【解析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件5、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.6、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.7、D【解析】先求得集合B的补集,再根据交集运算的定义,即可求得答案.【详解】由题意得:,所以,故选:D8、C【解析】利用函数值是否是最值,判断函数的对称轴即可【详解】当x时,函数cos2π=1,函数取得最大值,所以x是函数的一条对称轴故选C【点睛】对于函数由可得对称轴方程,由可得对称中心横坐标.9、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.10、C【解析】根据给定函数图象求出函数的解析式,再逐一分析各个选项即可判断作答.【详解】观察函数的图象得:,令的周期为,则,即,,由,且得:,于是有,对于A,,A不正确;对于B,取且,满足,,且,而,,此时,B不正确;对于C,,,,即,都有,C正确;对于D,由得:,解得:,令,解得与矛盾,D不正确.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为12、【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可.【详解】扇形的圆心角为120°,即,故扇形面积.故答案为:.13、③【解析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.14、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.15、【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:16、①③④【解析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)点的坐标为或(2)见解析,过的圆必过定点和【解析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值18、(1);(2)当生产的医用防护服年产量为20万件时,厂家所获利润最大,最大利润为180万元【解析】(1)根据题意,分、两种情况可写出答案;(2)利用二次函数和基本不等式的知识,分别求出、时的最大值,然后作比较可得答案.【详解】(1)因为每件商品售价为25元,则万件商品销售收入为万元,依题意得,当时,,当时,,所以;(2)当时,,此时,当时,取得最大值万元,当时,万元,此时,当且仅当,即时,取得最大值180万元,因为,所以当生产的医用防护服年产量为20万件时,厂家所获利润最大,最大利润为180万元19、(1);(2)-2.【解析】(1)化简f(x)解析式,根据正弦函数复合函数单调性即可求解;(2)根据求出的范围,再根据正弦函数最值即可求解.【小问1详解】.由得f(x)的单调递增区间为:;【小问2详解】将函数的图象向右平移个单位后得到的图象,则.,∴.20、(1)证明详见解析;(2)证明详见解析.【解析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【详解】(1)由于分别是的中点,所以.由于平面,平面,所以平面.(2)由于平面,平面,所以.由于,所以平面,由于平面,所以平面平面.【点睛】本小题主要考查线面平行证明,考查面面垂直的证明,属于中档题.21、(1);(2).【解析】(1)根据的解集为,可得1,2即为方程的两根,根据韦达定理,可得b,c的表达
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025专业仓储合同
- 2025国英置业合同成本手册
- 2025年度农村私人鱼塘承包与绿色渔业发展合作合同
- 二零二五年度农产品品牌营销委托收购合作协议3篇
- 二零二五年度车辆未过户期间的车辆事故免责条款合同3篇
- 二零二五年度火锅店转让及底料供应协议3篇
- 二零二五年度执业药师药品市场营销推广服务合同3篇
- 2025年度特种水产品养殖项目合伙经营合同3篇
- 二零二五年度特色小镇建设住房合作协议3篇
- 2025年度家庭农场规模化养猪场整体转让合同3篇
- 送温暖活动困难职工帮扶申请表
- 小学六年级英语教学小助手的培养研究
- 2024年人教版初二物理上册期末考试卷(附答案)
- 山东省临沂市河东区2023-2024学年五年级下学期期末综合(道德与法治+科学)检测试题
- 广安市岳池县2022-2023学年七年级上学期期末道德与法治试题
- 产品进入医院的程序及方法
- 司机劳务合同
- 搭乘私家车免责协议书
- 行测言语理解与表达真题及完整答案1套
- 某冶金机械修造厂全厂总压降变电所及配电系统设计
- 2024年社区工作者考试必背1000题题库【含答案】
评论
0/150
提交评论