山西省临汾市2025届数学高二上期末学业质量监测模拟试题含解析_第1页
山西省临汾市2025届数学高二上期末学业质量监测模拟试题含解析_第2页
山西省临汾市2025届数学高二上期末学业质量监测模拟试题含解析_第3页
山西省临汾市2025届数学高二上期末学业质量监测模拟试题含解析_第4页
山西省临汾市2025届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市2025届数学高二上期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.42.是等差数列,,,的第()项A.98 B.99C.100 D.1013.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.直线l在x轴上的截距为1C.若直线m:,则D.过与直线l平行的直线方程是4.已知是边长为6的等边所在平面外一点,,当三棱锥的体积最大时,三棱锥外接球的表面积为()A. B.C. D.5.已知函数的导数为,且,则()A. B.C.1 D.6.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42C.43 D.457.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.8.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列9.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.10.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.11.椭圆的离心率为()A B.C. D.12.等比数列中,,则()A. B.C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点为F,准线为l,C上的一点M在l上的射影为N,已知线段FN的垂直平分线方程为,则___________;___________.14.日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断増加.已知将吨水净化到纯净度为时所需费用(单位:元)为.则净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的___________倍,这说明,水的纯净度越高,净化费用增加的速度越___________(填“快”或“慢”).15.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.16.已知.若在定义域内单调递增,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.18.(12分)已知双曲线中心在原点,离心率为2,一个焦点(1)求双曲线方程;(2)设Q是双曲线上一点,且过点F、Q的直线l与y轴交于点M,若,求直线l的方程19.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值20.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.21.(12分)在等差数列中,已知且(1)求的通项公式;(2)设,求数列前项和22.(10分)已知椭圆焦距为,点在椭圆C上(1)求椭圆C的方程;(2)过点的直线与C交于M,N两点,点R是直线上任意一点,设直线的斜率分别为,若,求的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B2、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C3、D【解析】A.将直线方程的一般式化为斜截式可得;B.令y=0可得;C.求出直线m斜率即可判断;D.设要求直线的方程为,将代入即可.【详解】根据题意,依次分析选项:对于A,直线l:,即,其斜率,则倾斜角是,A错误;对于B,直线l:,令y=0,可得,l在x轴上的截距为,B错误;对于C,直线m:,其斜率,,故直线m与直线l不垂直,C错误;对于D,设要求直线的方程为,将代入,可得t=0,即要求直线为,D正确;故选:D4、C【解析】由题意分析可得,当时三棱锥的体积最大,然后作图,将三棱锥还原成正三棱柱,按照正三棱柱外接球半径的计算方法来计算,即可计算出球半径,从而完成求解.【详解】由题意可知,当三棱锥的体积最大时是时,为正三角形,如图所示,将三棱锥补成正三棱柱,该正三棱柱的外接球就是三棱锥的外接球,而正三棱柱的外接球球心落在上下底面外接圆圆心连线的中点上,设外接圆半径为,三棱锥外接球半径为,由正弦定理可得:,所以,,所以三棱锥外接球的表面积为.故选:C.5、B【解析】直接求导,令求出,再将带入原函数即可求解.【详解】由得,当时,,解得,所以,.故选:B6、B【解析】根据已知求出公差即可得出.【详解】设等差数列的公差为,因为,,所以,则.故选:B.7、D【解析】根据题意和直线的点方向式方程即可得出结果.【详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D8、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题9、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.10、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.11、D【解析】根据椭圆方程先写出标准方程,然后根据标准方程写出便可得到离心率.【详解】解:由题意得:,,故选:D12、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.2②.4【解析】设点,根据给定条件结合抛物线定义可得线段FN的中点及点M都在线段FN的垂直平分线,再列式计算作答.【详解】抛物线的焦点,准线l:,设点,则,线段FN的中点,由抛物线定义知:,即点M在线段FN的垂直平分线,因此,,解得,而,则有,,所以,.故答案为:2;4【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离14、①.②.快【解析】根据导数的概念可知净化所需费用的瞬时变化率即为函数的一阶导数,即先对函数求导,然后将和代入进行计算,再求,即可得到结果,进而能够判断水的纯净度越高,净化费用增加的速度的快慢【详解】由题意,可知净化所需费用的瞬时变化率为,所以,,所以,所以净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的倍;因为,可知水的纯净度越高,净化费用增加的速度越快.故答案为:,快.15、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:16、【解析】将问题转化为在上恒成立,再分离参数转化为求函数的最值问题即可得到实数的取值范围【详解】因为,所以;因为在内单调递增,所以在上恒成立,即在上恒成立,因为,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以18、(1)(2)或【解析】(1)依题意设所求的双曲线方程为,则,再根据离心率求出,即可求出,从而得到双曲线方程;(2)依题意可得直线的斜率存在,设,即可得到的坐标,依题意可得或,分两种情况分别求出的坐标,再根据的双曲线上,代入曲线方程,即可求出,即可得解;【小问1详解】解:设所求的双曲线方程为(,),则,,∴,又则,∴所求的双曲线方程为【小问2详解】解:∵直线l与y轴相交于M且过焦点,∴l的斜率一定存在,则设.令得,∵且M、Q、F共线于l,∴或当时,,,∴,∵Q在双曲线上,∴,∴,当时,,代入双曲线可得:,∴综上所求直线l的方程为:或19、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,而且,则,,设平面的法向量,由,令,得,又,因此有,所以平面.【小问3详解】由(2)知,,令直线与平面所成角为,则有,所以直线与平面所成角的正弦值.21、(1)(2)【解析】(1)由等差数列基本量的计算即可求解;(2)由裂项相消求和法即可求解.【小问1详解】解:由题意,设等差数列的公差为,则,,解得,;【小问2详解】解:,.22、(1);(2).【解析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论